| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drngid.b |
|- B = ( Base ` R ) |
| 2 |
|
drngid.z |
|- .0. = ( 0g ` R ) |
| 3 |
|
drngid.u |
|- .1. = ( 1r ` R ) |
| 4 |
|
drngid.g |
|- G = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) |
| 5 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
| 6 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
| 7 |
|
eqid |
|- ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( Unit ` R ) ) |
| 8 |
6 7 3
|
unitgrpid |
|- ( R e. Ring -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) ) |
| 9 |
5 8
|
syl |
|- ( R e. DivRing -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) ) |
| 10 |
1 6 2
|
isdrng |
|- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) ) |
| 11 |
10
|
simprbi |
|- ( R e. DivRing -> ( Unit ` R ) = ( B \ { .0. } ) ) |
| 12 |
11
|
oveq2d |
|- ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
| 13 |
12 4
|
eqtr4di |
|- ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = G ) |
| 14 |
13
|
fveq2d |
|- ( R e. DivRing -> ( 0g ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) = ( 0g ` G ) ) |
| 15 |
9 14
|
eqtrd |
|- ( R e. DivRing -> .1. = ( 0g ` G ) ) |