Step |
Hyp |
Ref |
Expression |
1 |
|
drngid2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
drngid2.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
drngid2.o |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
drngid2.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
df-3an |
⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( ( 𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ) |
6 |
|
eldifsn |
⊢ ( 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ) ) |
7 |
6
|
anbi1i |
⊢ ( ( 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( ( 𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ) |
8 |
5 7
|
bitr4i |
⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ) |
9 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) |
10 |
1 3 9
|
drngmgp |
⊢ ( 𝑅 ∈ DivRing → ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ∈ Grp ) |
11 |
|
difss |
⊢ ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 |
12 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
13 |
12 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
14 |
9 13
|
ressbas2 |
⊢ ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 → ( 𝐵 ∖ { 0 } ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
15 |
11 14
|
ax-mp |
⊢ ( 𝐵 ∖ { 0 } ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) |
16 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
17 |
|
difexg |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∖ { 0 } ) ∈ V ) |
18 |
12 2
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
19 |
9 18
|
ressplusg |
⊢ ( ( 𝐵 ∖ { 0 } ) ∈ V → · = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
20 |
16 17 19
|
mp2b |
⊢ · = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) |
21 |
|
eqid |
⊢ ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) |
22 |
15 20 21
|
isgrpid2 |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ∈ Grp → ( ( 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) = 𝐼 ) ) |
23 |
10 22
|
syl |
⊢ ( 𝑅 ∈ DivRing → ( ( 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) = 𝐼 ) ) |
24 |
8 23
|
syl5bb |
⊢ ( 𝑅 ∈ DivRing → ( ( 𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) = 𝐼 ) ) |
25 |
1 3 4 9
|
drngid |
⊢ ( 𝑅 ∈ DivRing → 1 = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
26 |
25
|
eqeq1d |
⊢ ( 𝑅 ∈ DivRing → ( 1 = 𝐼 ↔ ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) = 𝐼 ) ) |
27 |
24 26
|
bitr4d |
⊢ ( 𝑅 ∈ DivRing → ( ( 𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ 1 = 𝐼 ) ) |