Metamath Proof Explorer


Theorem drngid2

Description: Properties showing that an element I is the identity element of a division ring. (Contributed by Mario Carneiro, 11-Oct-2013)

Ref Expression
Hypotheses drngid2.b 𝐵 = ( Base ‘ 𝑅 )
drngid2.t · = ( .r𝑅 )
drngid2.o 0 = ( 0g𝑅 )
drngid2.u 1 = ( 1r𝑅 )
Assertion drngid2 ( 𝑅 ∈ DivRing → ( ( 𝐼𝐵𝐼0 ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ 1 = 𝐼 ) )

Proof

Step Hyp Ref Expression
1 drngid2.b 𝐵 = ( Base ‘ 𝑅 )
2 drngid2.t · = ( .r𝑅 )
3 drngid2.o 0 = ( 0g𝑅 )
4 drngid2.u 1 = ( 1r𝑅 )
5 df-3an ( ( 𝐼𝐵𝐼0 ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( ( 𝐼𝐵𝐼0 ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) )
6 eldifsn ( 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝐼𝐵𝐼0 ) )
7 6 anbi1i ( ( 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( ( 𝐼𝐵𝐼0 ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) )
8 5 7 bitr4i ( ( 𝐼𝐵𝐼0 ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) )
9 eqid ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) )
10 1 3 9 drngmgp ( 𝑅 ∈ DivRing → ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ∈ Grp )
11 difss ( 𝐵 ∖ { 0 } ) ⊆ 𝐵
12 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
13 12 1 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
14 9 13 ressbas2 ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 → ( 𝐵 ∖ { 0 } ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) )
15 11 14 ax-mp ( 𝐵 ∖ { 0 } ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) )
16 1 fvexi 𝐵 ∈ V
17 difexg ( 𝐵 ∈ V → ( 𝐵 ∖ { 0 } ) ∈ V )
18 12 2 mgpplusg · = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
19 9 18 ressplusg ( ( 𝐵 ∖ { 0 } ) ∈ V → · = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) )
20 16 17 19 mp2b · = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) )
21 eqid ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) )
22 15 20 21 isgrpid2 ( ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ∈ Grp → ( ( 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) = 𝐼 ) )
23 10 22 syl ( 𝑅 ∈ DivRing → ( ( 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) = 𝐼 ) )
24 8 23 syl5bb ( 𝑅 ∈ DivRing → ( ( 𝐼𝐵𝐼0 ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) = 𝐼 ) )
25 1 3 4 9 drngid ( 𝑅 ∈ DivRing → 1 = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) )
26 25 eqeq1d ( 𝑅 ∈ DivRing → ( 1 = 𝐼 ↔ ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) = 𝐼 ) )
27 24 26 bitr4d ( 𝑅 ∈ DivRing → ( ( 𝐼𝐵𝐼0 ∧ ( 𝐼 · 𝐼 ) = 𝐼 ) ↔ 1 = 𝐼 ) )