Step |
Hyp |
Ref |
Expression |
1 |
|
erng1r.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
erng1r.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
erng1r.d |
⊢ 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
erng1r.r |
⊢ 1 = ( 1r ‘ 𝐷 ) |
5 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
1 2 5
|
tendoidcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
8 |
1 2 5 3 7
|
erngbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝐷 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
9 |
6 8
|
eleqtrrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ∈ ( Base ‘ 𝐷 ) ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
11 |
|
eqid |
⊢ ( 𝑓 ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) |
12 |
10 1 2 5 11
|
tendo1ne0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ≠ ( 𝑓 ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) |
13 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
14 |
10 1 2 3 11 13
|
erng0g |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 0g ‘ 𝐷 ) = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) |
15 |
12 14
|
neeqtrrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ≠ ( 0g ‘ 𝐷 ) ) |
16 |
|
id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
|
eqid |
⊢ ( .r ‘ 𝐷 ) = ( .r ‘ 𝐷 ) |
18 |
1 2 5 3 17
|
erngmul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( ( I ↾ 𝑇 ) ∘ ( I ↾ 𝑇 ) ) ) |
19 |
16 6 6 18
|
syl12anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( ( I ↾ 𝑇 ) ∘ ( I ↾ 𝑇 ) ) ) |
20 |
|
f1oi |
⊢ ( I ↾ 𝑇 ) : 𝑇 –1-1-onto→ 𝑇 |
21 |
|
f1of |
⊢ ( ( I ↾ 𝑇 ) : 𝑇 –1-1-onto→ 𝑇 → ( I ↾ 𝑇 ) : 𝑇 ⟶ 𝑇 ) |
22 |
|
fcoi2 |
⊢ ( ( I ↾ 𝑇 ) : 𝑇 ⟶ 𝑇 → ( ( I ↾ 𝑇 ) ∘ ( I ↾ 𝑇 ) ) = ( I ↾ 𝑇 ) ) |
23 |
20 21 22
|
mp2b |
⊢ ( ( I ↾ 𝑇 ) ∘ ( I ↾ 𝑇 ) ) = ( I ↾ 𝑇 ) |
24 |
19 23
|
eqtrdi |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( I ↾ 𝑇 ) ) |
25 |
9 15 24
|
3jca |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( I ↾ 𝑇 ) ∈ ( Base ‘ 𝐷 ) ∧ ( I ↾ 𝑇 ) ≠ ( 0g ‘ 𝐷 ) ∧ ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( I ↾ 𝑇 ) ) ) |
26 |
1 3
|
erngdv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ DivRing ) |
27 |
7 17 13 4
|
drngid2 |
⊢ ( 𝐷 ∈ DivRing → ( ( ( I ↾ 𝑇 ) ∈ ( Base ‘ 𝐷 ) ∧ ( I ↾ 𝑇 ) ≠ ( 0g ‘ 𝐷 ) ∧ ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( I ↾ 𝑇 ) ) ↔ 1 = ( I ↾ 𝑇 ) ) ) |
28 |
26 27
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( I ↾ 𝑇 ) ∈ ( Base ‘ 𝐷 ) ∧ ( I ↾ 𝑇 ) ≠ ( 0g ‘ 𝐷 ) ∧ ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( I ↾ 𝑇 ) ) ↔ 1 = ( I ↾ 𝑇 ) ) ) |
29 |
25 28
|
mpbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 1 = ( I ↾ 𝑇 ) ) |