Metamath Proof Explorer


Theorem erngdv

Description: An endomorphism ring is a division ring. TODO: fix comment. (Contributed by NM, 11-Aug-2013)

Ref Expression
Hypotheses ernggrp.h 𝐻 = ( LHyp ‘ 𝐾 )
ernggrp.d 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
Assertion erngdv ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐷 ∈ DivRing )

Proof

Step Hyp Ref Expression
1 ernggrp.h 𝐻 = ( LHyp ‘ 𝐾 )
2 ernggrp.d 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
3 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
4 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 3 1 4 cdlemftr0 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ∃ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) 𝑓 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) )
6 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
7 eqid ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑏 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑎𝑓 ) ∘ ( 𝑏𝑓 ) ) ) ) = ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑏 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑎𝑓 ) ∘ ( 𝑏𝑓 ) ) ) )
8 eqid ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) )
9 eqid ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑎𝑓 ) ) ) = ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑎𝑓 ) ) )
10 eqid ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑏 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑎𝑏 ) ) = ( 𝑎 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑏 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑎𝑏 ) )
11 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
12 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
13 eqid ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
14 eqid ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
15 eqid ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ) ( meet ‘ 𝐾 ) ( ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑏 ( 𝑠𝑓 ) ) ) ) ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ) ( meet ‘ 𝐾 ) ( ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑏 ( 𝑠𝑓 ) ) ) ) )
16 eqid ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ) ( meet ‘ 𝐾 ) ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ) ( meet ‘ 𝐾 ) ( ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑏 ( 𝑠𝑓 ) ) ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑔 𝑏 ) ) ) ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ) ( meet ‘ 𝐾 ) ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ) ( meet ‘ 𝐾 ) ( ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑏 ( 𝑠𝑓 ) ) ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑔 𝑏 ) ) ) )
17 eqid ( 𝑧 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∀ 𝑏 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ( 𝑏 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑠𝑓 ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ) → ( 𝑧 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ) ( meet ‘ 𝐾 ) ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ) ( meet ‘ 𝐾 ) ( ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑏 ( 𝑠𝑓 ) ) ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑔 𝑏 ) ) ) ) ) ) = ( 𝑧 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∀ 𝑏 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ( 𝑏 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑠𝑓 ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ) → ( 𝑧 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ) ( meet ‘ 𝐾 ) ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ) ( meet ‘ 𝐾 ) ( ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑏 ( 𝑠𝑓 ) ) ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑔 𝑏 ) ) ) ) ) )
18 eqid ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ if ( ( 𝑠𝑓 ) = 𝑓 , 𝑔 , ( 𝑧 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∀ 𝑏 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ( 𝑏 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑠𝑓 ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ) → ( 𝑧 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ) ( meet ‘ 𝐾 ) ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ) ( meet ‘ 𝐾 ) ( ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑏 ( 𝑠𝑓 ) ) ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑔 𝑏 ) ) ) ) ) ) ) ) = ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ if ( ( 𝑠𝑓 ) = 𝑓 , 𝑔 , ( 𝑧 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∀ 𝑏 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ( 𝑏 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑠𝑓 ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ) → ( 𝑧 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ) ( meet ‘ 𝐾 ) ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑏 ) ) ( meet ‘ 𝐾 ) ( ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑏 ( 𝑠𝑓 ) ) ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑔 𝑏 ) ) ) ) ) ) ) )
19 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 erngdvlem4 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑓 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) → 𝐷 ∈ DivRing )
20 5 19 rexlimddv ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐷 ∈ DivRing )