Step |
Hyp |
Ref |
Expression |
1 |
|
ernggrp.h |
|- H = ( LHyp ` K ) |
2 |
|
ernggrp.d |
|- D = ( ( EDRing ` K ) ` W ) |
3 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
4 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
5 |
3 1 4
|
cdlemftr0 |
|- ( ( K e. HL /\ W e. H ) -> E. f e. ( ( LTrn ` K ) ` W ) f =/= ( _I |` ( Base ` K ) ) ) |
6 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
7 |
|
eqid |
|- ( a e. ( ( TEndo ` K ) ` W ) , b e. ( ( TEndo ` K ) ` W ) |-> ( f e. ( ( LTrn ` K ) ` W ) |-> ( ( a ` f ) o. ( b ` f ) ) ) ) = ( a e. ( ( TEndo ` K ) ` W ) , b e. ( ( TEndo ` K ) ` W ) |-> ( f e. ( ( LTrn ` K ) ` W ) |-> ( ( a ` f ) o. ( b ` f ) ) ) ) |
8 |
|
eqid |
|- ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) |
9 |
|
eqid |
|- ( a e. ( ( TEndo ` K ) ` W ) |-> ( f e. ( ( LTrn ` K ) ` W ) |-> `' ( a ` f ) ) ) = ( a e. ( ( TEndo ` K ) ` W ) |-> ( f e. ( ( LTrn ` K ) ` W ) |-> `' ( a ` f ) ) ) |
10 |
|
eqid |
|- ( a e. ( ( TEndo ` K ) ` W ) , b e. ( ( TEndo ` K ) ` W ) |-> ( a o. b ) ) = ( a e. ( ( TEndo ` K ) ` W ) , b e. ( ( TEndo ` K ) ` W ) |-> ( a o. b ) ) |
11 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
12 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
13 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
14 |
|
eqid |
|- ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) |
15 |
|
eqid |
|- ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) ( meet ` K ) ( ( f ` ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( b o. `' ( s ` f ) ) ) ) ) = ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) ( meet ` K ) ( ( f ` ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( b o. `' ( s ` f ) ) ) ) ) |
16 |
|
eqid |
|- ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` g ) ) ( meet ` K ) ( ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) ( meet ` K ) ( ( f ` ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( b o. `' ( s ` f ) ) ) ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( g o. `' b ) ) ) ) = ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` g ) ) ( meet ` K ) ( ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) ( meet ` K ) ( ( f ` ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( b o. `' ( s ` f ) ) ) ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( g o. `' b ) ) ) ) |
17 |
|
eqid |
|- ( iota_ z e. ( ( LTrn ` K ) ` W ) A. b e. ( ( LTrn ` K ) ` W ) ( ( b =/= ( _I |` ( Base ` K ) ) /\ ( ( ( trL ` K ) ` W ) ` b ) =/= ( ( ( trL ` K ) ` W ) ` ( s ` f ) ) /\ ( ( ( trL ` K ) ` W ) ` b ) =/= ( ( ( trL ` K ) ` W ) ` g ) ) -> ( z ` ( ( oc ` K ) ` W ) ) = ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` g ) ) ( meet ` K ) ( ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) ( meet ` K ) ( ( f ` ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( b o. `' ( s ` f ) ) ) ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( g o. `' b ) ) ) ) ) ) = ( iota_ z e. ( ( LTrn ` K ) ` W ) A. b e. ( ( LTrn ` K ) ` W ) ( ( b =/= ( _I |` ( Base ` K ) ) /\ ( ( ( trL ` K ) ` W ) ` b ) =/= ( ( ( trL ` K ) ` W ) ` ( s ` f ) ) /\ ( ( ( trL ` K ) ` W ) ` b ) =/= ( ( ( trL ` K ) ` W ) ` g ) ) -> ( z ` ( ( oc ` K ) ` W ) ) = ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` g ) ) ( meet ` K ) ( ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) ( meet ` K ) ( ( f ` ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( b o. `' ( s ` f ) ) ) ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( g o. `' b ) ) ) ) ) ) |
18 |
|
eqid |
|- ( g e. ( ( LTrn ` K ) ` W ) |-> if ( ( s ` f ) = f , g , ( iota_ z e. ( ( LTrn ` K ) ` W ) A. b e. ( ( LTrn ` K ) ` W ) ( ( b =/= ( _I |` ( Base ` K ) ) /\ ( ( ( trL ` K ) ` W ) ` b ) =/= ( ( ( trL ` K ) ` W ) ` ( s ` f ) ) /\ ( ( ( trL ` K ) ` W ) ` b ) =/= ( ( ( trL ` K ) ` W ) ` g ) ) -> ( z ` ( ( oc ` K ) ` W ) ) = ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` g ) ) ( meet ` K ) ( ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) ( meet ` K ) ( ( f ` ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( b o. `' ( s ` f ) ) ) ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( g o. `' b ) ) ) ) ) ) ) ) = ( g e. ( ( LTrn ` K ) ` W ) |-> if ( ( s ` f ) = f , g , ( iota_ z e. ( ( LTrn ` K ) ` W ) A. b e. ( ( LTrn ` K ) ` W ) ( ( b =/= ( _I |` ( Base ` K ) ) /\ ( ( ( trL ` K ) ` W ) ` b ) =/= ( ( ( trL ` K ) ` W ) ` ( s ` f ) ) /\ ( ( ( trL ` K ) ` W ) ` b ) =/= ( ( ( trL ` K ) ` W ) ` g ) ) -> ( z ` ( ( oc ` K ) ` W ) ) = ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` g ) ) ( meet ` K ) ( ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) ( meet ` K ) ( ( f ` ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( b o. `' ( s ` f ) ) ) ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( g o. `' b ) ) ) ) ) ) ) ) |
19 |
1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18
|
erngdvlem4 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( f e. ( ( LTrn ` K ) ` W ) /\ f =/= ( _I |` ( Base ` K ) ) ) ) -> D e. DivRing ) |
20 |
5 19
|
rexlimddv |
|- ( ( K e. HL /\ W e. H ) -> D e. DivRing ) |