| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erng0g.b |
|- B = ( Base ` K ) |
| 2 |
|
erng0g.h |
|- H = ( LHyp ` K ) |
| 3 |
|
erng0g.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 4 |
|
erng0g.d |
|- D = ( ( EDRing ` K ) ` W ) |
| 5 |
|
erng0g.o |
|- O = ( f e. T |-> ( _I |` B ) ) |
| 6 |
|
erng0g.z |
|- .0. = ( 0g ` D ) |
| 7 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
| 8 |
|
eqid |
|- ( +g ` D ) = ( +g ` D ) |
| 9 |
2 3 7 4 8
|
erngfplus |
|- ( ( K e. HL /\ W e. H ) -> ( +g ` D ) = ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) ) |
| 10 |
9
|
oveqd |
|- ( ( K e. HL /\ W e. H ) -> ( O ( +g ` D ) O ) = ( O ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) O ) ) |
| 11 |
1 2 3 7 5
|
tendo0cl |
|- ( ( K e. HL /\ W e. H ) -> O e. ( ( TEndo ` K ) ` W ) ) |
| 12 |
|
eqid |
|- ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) = ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) |
| 13 |
1 2 3 7 5 12
|
tendo0pl |
|- ( ( ( K e. HL /\ W e. H ) /\ O e. ( ( TEndo ` K ) ` W ) ) -> ( O ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) O ) = O ) |
| 14 |
11 13
|
mpdan |
|- ( ( K e. HL /\ W e. H ) -> ( O ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) O ) = O ) |
| 15 |
10 14
|
eqtrd |
|- ( ( K e. HL /\ W e. H ) -> ( O ( +g ` D ) O ) = O ) |
| 16 |
2 4
|
eringring |
|- ( ( K e. HL /\ W e. H ) -> D e. Ring ) |
| 17 |
|
ringgrp |
|- ( D e. Ring -> D e. Grp ) |
| 18 |
16 17
|
syl |
|- ( ( K e. HL /\ W e. H ) -> D e. Grp ) |
| 19 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 20 |
2 3 7 4 19
|
erngbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` D ) = ( ( TEndo ` K ) ` W ) ) |
| 21 |
11 20
|
eleqtrrd |
|- ( ( K e. HL /\ W e. H ) -> O e. ( Base ` D ) ) |
| 22 |
19 8 6
|
grpid |
|- ( ( D e. Grp /\ O e. ( Base ` D ) ) -> ( ( O ( +g ` D ) O ) = O <-> .0. = O ) ) |
| 23 |
18 21 22
|
syl2anc |
|- ( ( K e. HL /\ W e. H ) -> ( ( O ( +g ` D ) O ) = O <-> .0. = O ) ) |
| 24 |
15 23
|
mpbid |
|- ( ( K e. HL /\ W e. H ) -> .0. = O ) |