Step |
Hyp |
Ref |
Expression |
1 |
|
ernggrp.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
ernggrp.d |
⊢ 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
erngdv.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
4 |
|
erngdv.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
erngdv.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
erngdv.p |
⊢ 𝑃 = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑎 ‘ 𝑓 ) ∘ ( 𝑏 ‘ 𝑓 ) ) ) ) |
7 |
|
erngdv.o |
⊢ 0 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
8 |
|
erngdv.i |
⊢ 𝐼 = ( 𝑎 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ◡ ( 𝑎 ‘ 𝑓 ) ) ) |
9 |
|
erngrnglem.m |
⊢ + = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑎 ∘ 𝑏 ) ) |
10 |
|
edlemk6.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
11 |
|
edlemk6.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
12 |
|
edlemk6.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
edlemk6.p |
⊢ 𝑄 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
edlemk6.z |
⊢ 𝑍 = ( ( 𝑄 ∨ ( 𝑅 ‘ 𝑏 ) ) ∧ ( ( ℎ ‘ 𝑄 ) ∨ ( 𝑅 ‘ ( 𝑏 ∘ ◡ ( 𝑠 ‘ ℎ ) ) ) ) ) |
15 |
|
edlemk6.y |
⊢ 𝑌 = ( ( 𝑄 ∨ ( 𝑅 ‘ 𝑔 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝑔 ∘ ◡ 𝑏 ) ) ) ) |
16 |
|
edlemk6.x |
⊢ 𝑋 = ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ ( 𝑠 ‘ ℎ ) ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑄 ) = 𝑌 ) ) |
17 |
|
edlemk6.u |
⊢ 𝑈 = ( 𝑔 ∈ 𝑇 ↦ if ( ( 𝑠 ‘ ℎ ) = ℎ , 𝑔 , 𝑋 ) ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
19 |
1 4 5 2 18
|
erngbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝐷 ) = 𝐸 ) |
20 |
19
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐸 = ( Base ‘ 𝐷 ) ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) → 𝐸 = ( Base ‘ 𝐷 ) ) |
22 |
|
eqid |
⊢ ( .r ‘ 𝐷 ) = ( .r ‘ 𝐷 ) |
23 |
1 4 5 2 22
|
erngfmul |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( .r ‘ 𝐷 ) = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑎 ∘ 𝑏 ) ) ) |
24 |
9 23
|
eqtr4id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → + = ( .r ‘ 𝐷 ) ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) → + = ( .r ‘ 𝐷 ) ) |
26 |
3 1 4 5 7
|
tendo0cl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 ∈ 𝐸 ) |
27 |
26 19
|
eleqtrrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 ∈ ( Base ‘ 𝐷 ) ) |
28 |
|
eqid |
⊢ ( +g ‘ 𝐷 ) = ( +g ‘ 𝐷 ) |
29 |
1 4 5 2 28
|
erngfplus |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( +g ‘ 𝐷 ) = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑎 ‘ 𝑓 ) ∘ ( 𝑏 ‘ 𝑓 ) ) ) ) ) |
30 |
6 29
|
eqtr4id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑃 = ( +g ‘ 𝐷 ) ) |
31 |
30
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 0 𝑃 0 ) = ( 0 ( +g ‘ 𝐷 ) 0 ) ) |
32 |
3 1 4 5 7 6
|
tendo0pl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 0 ∈ 𝐸 ) → ( 0 𝑃 0 ) = 0 ) |
33 |
26 32
|
mpdan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 0 𝑃 0 ) = 0 ) |
34 |
31 33
|
eqtr3d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 0 ( +g ‘ 𝐷 ) 0 ) = 0 ) |
35 |
1 2 3 4 5 6 7 8
|
erngdvlem1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ Grp ) |
36 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
37 |
18 28 36
|
isgrpid2 |
⊢ ( 𝐷 ∈ Grp → ( ( 0 ∈ ( Base ‘ 𝐷 ) ∧ ( 0 ( +g ‘ 𝐷 ) 0 ) = 0 ) ↔ ( 0g ‘ 𝐷 ) = 0 ) ) |
38 |
35 37
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( 0 ∈ ( Base ‘ 𝐷 ) ∧ ( 0 ( +g ‘ 𝐷 ) 0 ) = 0 ) ↔ ( 0g ‘ 𝐷 ) = 0 ) ) |
39 |
27 34 38
|
mpbi2and |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 0g ‘ 𝐷 ) = 0 ) |
40 |
39
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 = ( 0g ‘ 𝐷 ) ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) → 0 = ( 0g ‘ 𝐷 ) ) |
42 |
1 2 3 4 5 6 7 8 9
|
erngdvlem3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ Ring ) |
43 |
1 4 5 2 42
|
erng1lem |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 1r ‘ 𝐷 ) = ( I ↾ 𝑇 ) ) |
44 |
43
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) = ( 1r ‘ 𝐷 ) ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) → ( I ↾ 𝑇 ) = ( 1r ‘ 𝐷 ) ) |
46 |
42
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) → 𝐷 ∈ Ring ) |
47 |
|
simp1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
48 |
24
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑠 + 𝑡 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) ) |
49 |
47 48
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 ) ) → ( 𝑠 + 𝑡 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) ) |
50 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 ) ) → 𝑠 ∈ 𝐸 ) |
51 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 ) ) → 𝑡 ∈ 𝐸 ) |
52 |
1 4 5 2 22
|
erngmul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) = ( 𝑠 ∘ 𝑡 ) ) |
53 |
47 50 51 52
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) = ( 𝑠 ∘ 𝑡 ) ) |
54 |
49 53
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 ) ) → ( 𝑠 + 𝑡 ) = ( 𝑠 ∘ 𝑡 ) ) |
55 |
3 1 4 5 7
|
tendoconid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 ) ) → ( 𝑠 ∘ 𝑡 ) ≠ 0 ) |
56 |
55
|
3adant1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 ) ) → ( 𝑠 ∘ 𝑡 ) ≠ 0 ) |
57 |
54 56
|
eqnetrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑡 ≠ 0 ) ) → ( 𝑠 + 𝑡 ) ≠ 0 ) |
58 |
3 1 4 5 7
|
tendo1ne0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ≠ 0 ) |
59 |
58
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) → ( I ↾ 𝑇 ) ≠ 0 ) |
60 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
61 |
|
simplrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → ℎ ∈ 𝑇 ) |
62 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) |
63 |
3 10 11 1 4 12 13 14 15 16 17 5 7
|
cdleml6 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ℎ ∈ 𝑇 ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → ( 𝑈 ∈ 𝐸 ∧ ( 𝑈 ‘ ( 𝑠 ‘ ℎ ) ) = ℎ ) ) |
64 |
63
|
simpld |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ℎ ∈ 𝑇 ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → 𝑈 ∈ 𝐸 ) |
65 |
60 61 62 64
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → 𝑈 ∈ 𝐸 ) |
66 |
3 10 11 1 4 12 13 14 15 16 17 5 7
|
cdleml9 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → 𝑈 ≠ 0 ) |
67 |
66
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → 𝑈 ≠ 0 ) |
68 |
24
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑈 + 𝑠 ) = ( 𝑈 ( .r ‘ 𝐷 ) 𝑠 ) ) |
69 |
68
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → ( 𝑈 + 𝑠 ) = ( 𝑈 ( .r ‘ 𝐷 ) 𝑠 ) ) |
70 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → 𝑠 ∈ 𝐸 ) |
71 |
1 4 5 2 22
|
erngmul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸 ) ) → ( 𝑈 ( .r ‘ 𝐷 ) 𝑠 ) = ( 𝑈 ∘ 𝑠 ) ) |
72 |
60 65 70 71
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → ( 𝑈 ( .r ‘ 𝐷 ) 𝑠 ) = ( 𝑈 ∘ 𝑠 ) ) |
73 |
3 10 11 1 4 12 13 14 15 16 17 5 7
|
cdleml8 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → ( 𝑈 ∘ 𝑠 ) = ( I ↾ 𝑇 ) ) |
74 |
73
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → ( 𝑈 ∘ 𝑠 ) = ( I ↾ 𝑇 ) ) |
75 |
69 72 74
|
3eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → ( 𝑈 + 𝑠 ) = ( I ↾ 𝑇 ) ) |
76 |
21 25 41 45 46 57 59 65 67 75
|
isdrngd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ) → 𝐷 ∈ DivRing ) |