| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erng1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
erng1.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
erng1.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
erng1.d |
⊢ 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
erng1.r |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ Ring ) |
| 6 |
1 2 3
|
tendoidcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ∈ 𝐸 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 8 |
1 2 3 4 7
|
erngbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝐷 ) = 𝐸 ) |
| 9 |
6 8
|
eleqtrrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ∈ ( Base ‘ 𝐷 ) ) |
| 10 |
8
|
eleq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑢 ∈ ( Base ‘ 𝐷 ) ↔ 𝑢 ∈ 𝐸 ) ) |
| 11 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 12 |
6
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( I ↾ 𝑇 ) ∈ 𝐸 ) |
| 13 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → 𝑢 ∈ 𝐸 ) |
| 14 |
|
eqid |
⊢ ( .r ‘ 𝐷 ) = ( .r ‘ 𝐷 ) |
| 15 |
1 2 3 4 14
|
erngmul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( I ↾ 𝑇 ) ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( ( I ↾ 𝑇 ) ∘ 𝑢 ) ) |
| 16 |
11 12 13 15
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( ( I ↾ 𝑇 ) ∘ 𝑢 ) ) |
| 17 |
1 2 3
|
tendo1mul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) ∘ 𝑢 ) = 𝑢 ) |
| 18 |
16 17
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ) |
| 19 |
1 2 3 4 14
|
erngmul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑢 ∈ 𝐸 ∧ ( I ↾ 𝑇 ) ∈ 𝐸 ) ) → ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( 𝑢 ∘ ( I ↾ 𝑇 ) ) ) |
| 20 |
11 13 12 19
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( 𝑢 ∘ ( I ↾ 𝑇 ) ) ) |
| 21 |
1 2 3
|
tendo1mulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( 𝑢 ∘ ( I ↾ 𝑇 ) ) = 𝑢 ) |
| 22 |
20 21
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) |
| 23 |
18 22
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) |
| 24 |
23
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑢 ∈ 𝐸 → ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) ) |
| 25 |
10 24
|
sylbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑢 ∈ ( Base ‘ 𝐷 ) → ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) ) |
| 26 |
25
|
ralrimiv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∀ 𝑢 ∈ ( Base ‘ 𝐷 ) ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) |
| 27 |
|
eqid |
⊢ ( 1r ‘ 𝐷 ) = ( 1r ‘ 𝐷 ) |
| 28 |
7 14 27
|
isringid |
⊢ ( 𝐷 ∈ Ring → ( ( ( I ↾ 𝑇 ) ∈ ( Base ‘ 𝐷 ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝐷 ) ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) ↔ ( 1r ‘ 𝐷 ) = ( I ↾ 𝑇 ) ) ) |
| 29 |
5 28
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( I ↾ 𝑇 ) ∈ ( Base ‘ 𝐷 ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝐷 ) ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) ↔ ( 1r ‘ 𝐷 ) = ( I ↾ 𝑇 ) ) ) |
| 30 |
9 26 29
|
mpbi2and |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 1r ‘ 𝐷 ) = ( I ↾ 𝑇 ) ) |