Step |
Hyp |
Ref |
Expression |
1 |
|
erng1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
erng1.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
erng1.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
erng1.d |
⊢ 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
erng1.r |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ Ring ) |
6 |
1 2 3
|
tendoidcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ∈ 𝐸 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
8 |
1 2 3 4 7
|
erngbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝐷 ) = 𝐸 ) |
9 |
6 8
|
eleqtrrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ∈ ( Base ‘ 𝐷 ) ) |
10 |
8
|
eleq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑢 ∈ ( Base ‘ 𝐷 ) ↔ 𝑢 ∈ 𝐸 ) ) |
11 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
6
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( I ↾ 𝑇 ) ∈ 𝐸 ) |
13 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → 𝑢 ∈ 𝐸 ) |
14 |
|
eqid |
⊢ ( .r ‘ 𝐷 ) = ( .r ‘ 𝐷 ) |
15 |
1 2 3 4 14
|
erngmul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( I ↾ 𝑇 ) ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( ( I ↾ 𝑇 ) ∘ 𝑢 ) ) |
16 |
11 12 13 15
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( ( I ↾ 𝑇 ) ∘ 𝑢 ) ) |
17 |
1 2 3
|
tendo1mul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) ∘ 𝑢 ) = 𝑢 ) |
18 |
16 17
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ) |
19 |
1 2 3 4 14
|
erngmul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑢 ∈ 𝐸 ∧ ( I ↾ 𝑇 ) ∈ 𝐸 ) ) → ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( 𝑢 ∘ ( I ↾ 𝑇 ) ) ) |
20 |
11 13 12 19
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( 𝑢 ∘ ( I ↾ 𝑇 ) ) ) |
21 |
1 2 3
|
tendo1mulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( 𝑢 ∘ ( I ↾ 𝑇 ) ) = 𝑢 ) |
22 |
20 21
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) |
23 |
18 22
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑢 ∈ 𝐸 ) → ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) |
24 |
23
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑢 ∈ 𝐸 → ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) ) |
25 |
10 24
|
sylbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑢 ∈ ( Base ‘ 𝐷 ) → ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) ) |
26 |
25
|
ralrimiv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∀ 𝑢 ∈ ( Base ‘ 𝐷 ) ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) |
27 |
|
eqid |
⊢ ( 1r ‘ 𝐷 ) = ( 1r ‘ 𝐷 ) |
28 |
7 14 27
|
isringid |
⊢ ( 𝐷 ∈ Ring → ( ( ( I ↾ 𝑇 ) ∈ ( Base ‘ 𝐷 ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝐷 ) ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) ↔ ( 1r ‘ 𝐷 ) = ( I ↾ 𝑇 ) ) ) |
29 |
5 28
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( I ↾ 𝑇 ) ∈ ( Base ‘ 𝐷 ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝐷 ) ( ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = 𝑢 ) ) ↔ ( 1r ‘ 𝐷 ) = ( I ↾ 𝑇 ) ) ) |
30 |
9 26 29
|
mpbi2and |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 1r ‘ 𝐷 ) = ( I ↾ 𝑇 ) ) |