Step |
Hyp |
Ref |
Expression |
1 |
|
erng1.h |
|- H = ( LHyp ` K ) |
2 |
|
erng1.t |
|- T = ( ( LTrn ` K ) ` W ) |
3 |
|
erng1.e |
|- E = ( ( TEndo ` K ) ` W ) |
4 |
|
erng1.d |
|- D = ( ( EDRing ` K ) ` W ) |
5 |
|
erng1.r |
|- ( ( K e. HL /\ W e. H ) -> D e. Ring ) |
6 |
1 2 3
|
tendoidcl |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) e. E ) |
7 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
8 |
1 2 3 4 7
|
erngbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` D ) = E ) |
9 |
6 8
|
eleqtrrd |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) e. ( Base ` D ) ) |
10 |
8
|
eleq2d |
|- ( ( K e. HL /\ W e. H ) -> ( u e. ( Base ` D ) <-> u e. E ) ) |
11 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ u e. E ) -> ( K e. HL /\ W e. H ) ) |
12 |
6
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ u e. E ) -> ( _I |` T ) e. E ) |
13 |
|
simpr |
|- ( ( ( K e. HL /\ W e. H ) /\ u e. E ) -> u e. E ) |
14 |
|
eqid |
|- ( .r ` D ) = ( .r ` D ) |
15 |
1 2 3 4 14
|
erngmul |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( _I |` T ) e. E /\ u e. E ) ) -> ( ( _I |` T ) ( .r ` D ) u ) = ( ( _I |` T ) o. u ) ) |
16 |
11 12 13 15
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ u e. E ) -> ( ( _I |` T ) ( .r ` D ) u ) = ( ( _I |` T ) o. u ) ) |
17 |
1 2 3
|
tendo1mul |
|- ( ( ( K e. HL /\ W e. H ) /\ u e. E ) -> ( ( _I |` T ) o. u ) = u ) |
18 |
16 17
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ u e. E ) -> ( ( _I |` T ) ( .r ` D ) u ) = u ) |
19 |
1 2 3 4 14
|
erngmul |
|- ( ( ( K e. HL /\ W e. H ) /\ ( u e. E /\ ( _I |` T ) e. E ) ) -> ( u ( .r ` D ) ( _I |` T ) ) = ( u o. ( _I |` T ) ) ) |
20 |
11 13 12 19
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ u e. E ) -> ( u ( .r ` D ) ( _I |` T ) ) = ( u o. ( _I |` T ) ) ) |
21 |
1 2 3
|
tendo1mulr |
|- ( ( ( K e. HL /\ W e. H ) /\ u e. E ) -> ( u o. ( _I |` T ) ) = u ) |
22 |
20 21
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ u e. E ) -> ( u ( .r ` D ) ( _I |` T ) ) = u ) |
23 |
18 22
|
jca |
|- ( ( ( K e. HL /\ W e. H ) /\ u e. E ) -> ( ( ( _I |` T ) ( .r ` D ) u ) = u /\ ( u ( .r ` D ) ( _I |` T ) ) = u ) ) |
24 |
23
|
ex |
|- ( ( K e. HL /\ W e. H ) -> ( u e. E -> ( ( ( _I |` T ) ( .r ` D ) u ) = u /\ ( u ( .r ` D ) ( _I |` T ) ) = u ) ) ) |
25 |
10 24
|
sylbid |
|- ( ( K e. HL /\ W e. H ) -> ( u e. ( Base ` D ) -> ( ( ( _I |` T ) ( .r ` D ) u ) = u /\ ( u ( .r ` D ) ( _I |` T ) ) = u ) ) ) |
26 |
25
|
ralrimiv |
|- ( ( K e. HL /\ W e. H ) -> A. u e. ( Base ` D ) ( ( ( _I |` T ) ( .r ` D ) u ) = u /\ ( u ( .r ` D ) ( _I |` T ) ) = u ) ) |
27 |
|
eqid |
|- ( 1r ` D ) = ( 1r ` D ) |
28 |
7 14 27
|
isringid |
|- ( D e. Ring -> ( ( ( _I |` T ) e. ( Base ` D ) /\ A. u e. ( Base ` D ) ( ( ( _I |` T ) ( .r ` D ) u ) = u /\ ( u ( .r ` D ) ( _I |` T ) ) = u ) ) <-> ( 1r ` D ) = ( _I |` T ) ) ) |
29 |
5 28
|
syl |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( _I |` T ) e. ( Base ` D ) /\ A. u e. ( Base ` D ) ( ( ( _I |` T ) ( .r ` D ) u ) = u /\ ( u ( .r ` D ) ( _I |` T ) ) = u ) ) <-> ( 1r ` D ) = ( _I |` T ) ) ) |
30 |
9 26 29
|
mpbi2and |
|- ( ( K e. HL /\ W e. H ) -> ( 1r ` D ) = ( _I |` T ) ) |