Description: Multiplicative identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 20-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tendof.h | |- H = ( LHyp ` K ) |
|
tendof.t | |- T = ( ( LTrn ` K ) ` W ) |
||
tendof.e | |- E = ( ( TEndo ` K ) ` W ) |
||
Assertion | tendo1mulr | |- ( ( ( K e. HL /\ W e. H ) /\ U e. E ) -> ( U o. ( _I |` T ) ) = U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendof.h | |- H = ( LHyp ` K ) |
|
2 | tendof.t | |- T = ( ( LTrn ` K ) ` W ) |
|
3 | tendof.e | |- E = ( ( TEndo ` K ) ` W ) |
|
4 | 1 2 3 | tendof | |- ( ( ( K e. HL /\ W e. H ) /\ U e. E ) -> U : T --> T ) |
5 | fcoi1 | |- ( U : T --> T -> ( U o. ( _I |` T ) ) = U ) |
|
6 | 4 5 | syl | |- ( ( ( K e. HL /\ W e. H ) /\ U e. E ) -> ( U o. ( _I |` T ) ) = U ) |