Metamath Proof Explorer


Theorem erngdvlem1

Description: Lemma for eringring . (Contributed by NM, 4-Aug-2013)

Ref Expression
Hypotheses ernggrp.h
|- H = ( LHyp ` K )
ernggrp.d
|- D = ( ( EDRing ` K ) ` W )
erngdv.b
|- B = ( Base ` K )
erngdv.t
|- T = ( ( LTrn ` K ) ` W )
erngdv.e
|- E = ( ( TEndo ` K ) ` W )
erngdv.p
|- P = ( a e. E , b e. E |-> ( f e. T |-> ( ( a ` f ) o. ( b ` f ) ) ) )
erngdv.o
|- .0. = ( f e. T |-> ( _I |` B ) )
erngdv.i
|- I = ( a e. E |-> ( f e. T |-> `' ( a ` f ) ) )
Assertion erngdvlem1
|- ( ( K e. HL /\ W e. H ) -> D e. Grp )

Proof

Step Hyp Ref Expression
1 ernggrp.h
 |-  H = ( LHyp ` K )
2 ernggrp.d
 |-  D = ( ( EDRing ` K ) ` W )
3 erngdv.b
 |-  B = ( Base ` K )
4 erngdv.t
 |-  T = ( ( LTrn ` K ) ` W )
5 erngdv.e
 |-  E = ( ( TEndo ` K ) ` W )
6 erngdv.p
 |-  P = ( a e. E , b e. E |-> ( f e. T |-> ( ( a ` f ) o. ( b ` f ) ) ) )
7 erngdv.o
 |-  .0. = ( f e. T |-> ( _I |` B ) )
8 erngdv.i
 |-  I = ( a e. E |-> ( f e. T |-> `' ( a ` f ) ) )
9 eqid
 |-  ( Base ` D ) = ( Base ` D )
10 1 4 5 2 9 erngbase
 |-  ( ( K e. HL /\ W e. H ) -> ( Base ` D ) = E )
11 10 eqcomd
 |-  ( ( K e. HL /\ W e. H ) -> E = ( Base ` D ) )
12 eqid
 |-  ( +g ` D ) = ( +g ` D )
13 1 4 5 2 12 erngfplus
 |-  ( ( K e. HL /\ W e. H ) -> ( +g ` D ) = ( a e. E , b e. E |-> ( f e. T |-> ( ( a ` f ) o. ( b ` f ) ) ) ) )
14 6 13 eqtr4id
 |-  ( ( K e. HL /\ W e. H ) -> P = ( +g ` D ) )
15 1 4 5 6 tendoplcl
 |-  ( ( ( K e. HL /\ W e. H ) /\ s e. E /\ t e. E ) -> ( s P t ) e. E )
16 1 4 5 6 tendoplass
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ u e. E ) ) -> ( ( s P t ) P u ) = ( s P ( t P u ) ) )
17 3 1 4 5 7 tendo0cl
 |-  ( ( K e. HL /\ W e. H ) -> .0. e. E )
18 3 1 4 5 7 6 tendo0pl
 |-  ( ( ( K e. HL /\ W e. H ) /\ s e. E ) -> ( .0. P s ) = s )
19 1 4 5 8 tendoicl
 |-  ( ( ( K e. HL /\ W e. H ) /\ s e. E ) -> ( I ` s ) e. E )
20 1 4 5 8 3 6 7 tendoipl
 |-  ( ( ( K e. HL /\ W e. H ) /\ s e. E ) -> ( ( I ` s ) P s ) = .0. )
21 11 14 15 16 17 18 19 20 isgrpd
 |-  ( ( K e. HL /\ W e. H ) -> D e. Grp )