Metamath Proof Explorer


Theorem isringid

Description: Properties showing that an element I is the unity element of a ring. (Contributed by NM, 7-Aug-2013)

Ref Expression
Hypotheses rngidm.b
|- B = ( Base ` R )
rngidm.t
|- .x. = ( .r ` R )
rngidm.u
|- .1. = ( 1r ` R )
Assertion isringid
|- ( R e. Ring -> ( ( I e. B /\ A. x e. B ( ( I .x. x ) = x /\ ( x .x. I ) = x ) ) <-> .1. = I ) )

Proof

Step Hyp Ref Expression
1 rngidm.b
 |-  B = ( Base ` R )
2 rngidm.t
 |-  .x. = ( .r ` R )
3 rngidm.u
 |-  .1. = ( 1r ` R )
4 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
5 4 1 mgpbas
 |-  B = ( Base ` ( mulGrp ` R ) )
6 4 3 ringidval
 |-  .1. = ( 0g ` ( mulGrp ` R ) )
7 4 2 mgpplusg
 |-  .x. = ( +g ` ( mulGrp ` R ) )
8 1 2 ringideu
 |-  ( R e. Ring -> E! y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) )
9 reurex
 |-  ( E! y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) -> E. y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) )
10 8 9 syl
 |-  ( R e. Ring -> E. y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) )
11 5 6 7 10 ismgmid
 |-  ( R e. Ring -> ( ( I e. B /\ A. x e. B ( ( I .x. x ) = x /\ ( x .x. I ) = x ) ) <-> .1. = I ) )