Metamath Proof Explorer


Theorem cdleml8

Description: Part of proof of Lemma L of Crawley p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013)

Ref Expression
Hypotheses cdleml6.b 𝐵 = ( Base ‘ 𝐾 )
cdleml6.j = ( join ‘ 𝐾 )
cdleml6.m = ( meet ‘ 𝐾 )
cdleml6.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleml6.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdleml6.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdleml6.p 𝑄 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
cdleml6.z 𝑍 = ( ( 𝑄 ( 𝑅𝑏 ) ) ( ( 𝑄 ) ( 𝑅 ‘ ( 𝑏 ( 𝑠 ) ) ) ) )
cdleml6.y 𝑌 = ( ( 𝑄 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
cdleml6.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅 ‘ ( 𝑠 ) ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑄 ) = 𝑌 ) )
cdleml6.u 𝑈 = ( 𝑔𝑇 ↦ if ( ( 𝑠 ) = , 𝑔 , 𝑋 ) )
cdleml6.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
cdleml6.o 0 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
Assertion cdleml8 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → ( 𝑈𝑠 ) = ( I ↾ 𝑇 ) )

Proof

Step Hyp Ref Expression
1 cdleml6.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleml6.j = ( join ‘ 𝐾 )
3 cdleml6.m = ( meet ‘ 𝐾 )
4 cdleml6.h 𝐻 = ( LHyp ‘ 𝐾 )
5 cdleml6.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 cdleml6.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
7 cdleml6.p 𝑄 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
8 cdleml6.z 𝑍 = ( ( 𝑄 ( 𝑅𝑏 ) ) ( ( 𝑄 ) ( 𝑅 ‘ ( 𝑏 ( 𝑠 ) ) ) ) )
9 cdleml6.y 𝑌 = ( ( 𝑄 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
10 cdleml6.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅 ‘ ( 𝑠 ) ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑄 ) = 𝑌 ) )
11 cdleml6.u 𝑈 = ( 𝑔𝑇 ↦ if ( ( 𝑠 ) = , 𝑔 , 𝑋 ) )
12 cdleml6.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
13 cdleml6.o 0 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
14 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
15 1 2 3 4 5 6 7 8 9 10 11 12 13 cdleml6 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑇 ∧ ( 𝑠𝐸𝑠0 ) ) → ( 𝑈𝐸 ∧ ( 𝑈 ‘ ( 𝑠 ) ) = ) )
16 15 3adant2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → ( 𝑈𝐸 ∧ ( 𝑈 ‘ ( 𝑠 ) ) = ) )
17 16 simpld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → 𝑈𝐸 )
18 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → 𝑠𝐸 )
19 4 12 tendococl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸𝑠𝐸 ) → ( 𝑈𝑠 ) ∈ 𝐸 )
20 14 17 18 19 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → ( 𝑈𝑠 ) ∈ 𝐸 )
21 4 5 12 tendoidcl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( I ↾ 𝑇 ) ∈ 𝐸 )
22 21 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → ( I ↾ 𝑇 ) ∈ 𝐸 )
23 1 2 3 4 5 6 7 8 9 10 11 12 13 cdleml7 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑇 ∧ ( 𝑠𝐸𝑠0 ) ) → ( ( 𝑈𝑠 ) ‘ ) = ( ( I ↾ 𝑇 ) ‘ ) )
24 23 3adant2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → ( ( 𝑈𝑠 ) ‘ ) = ( ( I ↾ 𝑇 ) ‘ ) )
25 simp2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → ( 𝑇 ≠ ( I ↾ 𝐵 ) ) )
26 1 4 5 12 tendocan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑈𝑠 ) ∈ 𝐸 ∧ ( I ↾ 𝑇 ) ∈ 𝐸 ∧ ( ( 𝑈𝑠 ) ‘ ) = ( ( I ↾ 𝑇 ) ‘ ) ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑈𝑠 ) = ( I ↾ 𝑇 ) )
27 14 20 22 24 25 26 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → ( 𝑈𝑠 ) = ( I ↾ 𝑇 ) )