Step |
Hyp |
Ref |
Expression |
1 |
|
cdleml6.b |
|- B = ( Base ` K ) |
2 |
|
cdleml6.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleml6.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleml6.h |
|- H = ( LHyp ` K ) |
5 |
|
cdleml6.t |
|- T = ( ( LTrn ` K ) ` W ) |
6 |
|
cdleml6.r |
|- R = ( ( trL ` K ) ` W ) |
7 |
|
cdleml6.p |
|- Q = ( ( oc ` K ) ` W ) |
8 |
|
cdleml6.z |
|- Z = ( ( Q .\/ ( R ` b ) ) ./\ ( ( h ` Q ) .\/ ( R ` ( b o. `' ( s ` h ) ) ) ) ) |
9 |
|
cdleml6.y |
|- Y = ( ( Q .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) ) |
10 |
|
cdleml6.x |
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` ( s ` h ) ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` Q ) = Y ) ) |
11 |
|
cdleml6.u |
|- U = ( g e. T |-> if ( ( s ` h ) = h , g , X ) ) |
12 |
|
cdleml6.e |
|- E = ( ( TEndo ` K ) ` W ) |
13 |
|
cdleml6.o |
|- .0. = ( f e. T |-> ( _I |` B ) ) |
14 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( h e. T /\ h =/= ( _I |` B ) ) /\ ( s e. E /\ s =/= .0. ) ) -> ( K e. HL /\ W e. H ) ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cdleml6 |
|- ( ( ( K e. HL /\ W e. H ) /\ h e. T /\ ( s e. E /\ s =/= .0. ) ) -> ( U e. E /\ ( U ` ( s ` h ) ) = h ) ) |
16 |
15
|
3adant2r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( h e. T /\ h =/= ( _I |` B ) ) /\ ( s e. E /\ s =/= .0. ) ) -> ( U e. E /\ ( U ` ( s ` h ) ) = h ) ) |
17 |
16
|
simpld |
|- ( ( ( K e. HL /\ W e. H ) /\ ( h e. T /\ h =/= ( _I |` B ) ) /\ ( s e. E /\ s =/= .0. ) ) -> U e. E ) |
18 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( h e. T /\ h =/= ( _I |` B ) ) /\ ( s e. E /\ s =/= .0. ) ) -> s e. E ) |
19 |
4 12
|
tendococl |
|- ( ( ( K e. HL /\ W e. H ) /\ U e. E /\ s e. E ) -> ( U o. s ) e. E ) |
20 |
14 17 18 19
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( h e. T /\ h =/= ( _I |` B ) ) /\ ( s e. E /\ s =/= .0. ) ) -> ( U o. s ) e. E ) |
21 |
4 5 12
|
tendoidcl |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) e. E ) |
22 |
21
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( h e. T /\ h =/= ( _I |` B ) ) /\ ( s e. E /\ s =/= .0. ) ) -> ( _I |` T ) e. E ) |
23 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cdleml7 |
|- ( ( ( K e. HL /\ W e. H ) /\ h e. T /\ ( s e. E /\ s =/= .0. ) ) -> ( ( U o. s ) ` h ) = ( ( _I |` T ) ` h ) ) |
24 |
23
|
3adant2r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( h e. T /\ h =/= ( _I |` B ) ) /\ ( s e. E /\ s =/= .0. ) ) -> ( ( U o. s ) ` h ) = ( ( _I |` T ) ` h ) ) |
25 |
|
simp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( h e. T /\ h =/= ( _I |` B ) ) /\ ( s e. E /\ s =/= .0. ) ) -> ( h e. T /\ h =/= ( _I |` B ) ) ) |
26 |
1 4 5 12
|
tendocan |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( U o. s ) e. E /\ ( _I |` T ) e. E /\ ( ( U o. s ) ` h ) = ( ( _I |` T ) ` h ) ) /\ ( h e. T /\ h =/= ( _I |` B ) ) ) -> ( U o. s ) = ( _I |` T ) ) |
27 |
14 20 22 24 25 26
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( h e. T /\ h =/= ( _I |` B ) ) /\ ( s e. E /\ s =/= .0. ) ) -> ( U o. s ) = ( _I |` T ) ) |