Metamath Proof Explorer


Theorem cdleml9

Description: Part of proof of Lemma L of Crawley p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013)

Ref Expression
Hypotheses cdleml6.b 𝐵 = ( Base ‘ 𝐾 )
cdleml6.j = ( join ‘ 𝐾 )
cdleml6.m = ( meet ‘ 𝐾 )
cdleml6.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleml6.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdleml6.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdleml6.p 𝑄 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
cdleml6.z 𝑍 = ( ( 𝑄 ( 𝑅𝑏 ) ) ( ( 𝑄 ) ( 𝑅 ‘ ( 𝑏 ( 𝑠 ) ) ) ) )
cdleml6.y 𝑌 = ( ( 𝑄 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
cdleml6.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅 ‘ ( 𝑠 ) ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑄 ) = 𝑌 ) )
cdleml6.u 𝑈 = ( 𝑔𝑇 ↦ if ( ( 𝑠 ) = , 𝑔 , 𝑋 ) )
cdleml6.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
cdleml6.o 0 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
Assertion cdleml9 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → 𝑈0 )

Proof

Step Hyp Ref Expression
1 cdleml6.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleml6.j = ( join ‘ 𝐾 )
3 cdleml6.m = ( meet ‘ 𝐾 )
4 cdleml6.h 𝐻 = ( LHyp ‘ 𝐾 )
5 cdleml6.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 cdleml6.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
7 cdleml6.p 𝑄 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
8 cdleml6.z 𝑍 = ( ( 𝑄 ( 𝑅𝑏 ) ) ( ( 𝑄 ) ( 𝑅 ‘ ( 𝑏 ( 𝑠 ) ) ) ) )
9 cdleml6.y 𝑌 = ( ( 𝑄 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
10 cdleml6.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅 ‘ ( 𝑠 ) ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑄 ) = 𝑌 ) )
11 cdleml6.u 𝑈 = ( 𝑔𝑇 ↦ if ( ( 𝑠 ) = , 𝑔 , 𝑋 ) )
12 cdleml6.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
13 cdleml6.o 0 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
14 1 4 5 12 13 tendo1ne0 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( I ↾ 𝑇 ) ≠ 0 )
15 14 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → ( I ↾ 𝑇 ) ≠ 0 )
16 1 2 3 4 5 6 7 8 9 10 11 12 13 cdleml8 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → ( 𝑈𝑠 ) = ( I ↾ 𝑇 ) )
17 16 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) ∧ 𝑈 = 0 ) → ( 𝑈𝑠 ) = ( I ↾ 𝑇 ) )
18 coeq1 ( 𝑈 = 0 → ( 𝑈𝑠 ) = ( 0𝑠 ) )
19 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
20 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → 𝑠𝐸 )
21 1 4 5 12 13 tendo0mul ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑠𝐸 ) → ( 0𝑠 ) = 0 )
22 19 20 21 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → ( 0𝑠 ) = 0 )
23 18 22 sylan9eqr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) ∧ 𝑈 = 0 ) → ( 𝑈𝑠 ) = 0 )
24 17 23 eqtr3d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) ∧ 𝑈 = 0 ) → ( I ↾ 𝑇 ) = 0 )
25 24 ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → ( 𝑈 = 0 → ( I ↾ 𝑇 ) = 0 ) )
26 25 necon3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → ( ( I ↾ 𝑇 ) ≠ 0𝑈0 ) )
27 15 26 mpd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠𝐸𝑠0 ) ) → 𝑈0 )