Step |
Hyp |
Ref |
Expression |
1 |
|
cdleml6.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdleml6.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleml6.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleml6.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
cdleml6.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
cdleml6.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdleml6.p |
⊢ 𝑄 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdleml6.z |
⊢ 𝑍 = ( ( 𝑄 ∨ ( 𝑅 ‘ 𝑏 ) ) ∧ ( ( ℎ ‘ 𝑄 ) ∨ ( 𝑅 ‘ ( 𝑏 ∘ ◡ ( 𝑠 ‘ ℎ ) ) ) ) ) |
9 |
|
cdleml6.y |
⊢ 𝑌 = ( ( 𝑄 ∨ ( 𝑅 ‘ 𝑔 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝑔 ∘ ◡ 𝑏 ) ) ) ) |
10 |
|
cdleml6.x |
⊢ 𝑋 = ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ ( 𝑠 ‘ ℎ ) ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑄 ) = 𝑌 ) ) |
11 |
|
cdleml6.u |
⊢ 𝑈 = ( 𝑔 ∈ 𝑇 ↦ if ( ( 𝑠 ‘ ℎ ) = ℎ , 𝑔 , 𝑋 ) ) |
12 |
|
cdleml6.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
cdleml6.o |
⊢ 0 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
14 |
1 4 5 12 13
|
tendo1ne0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ≠ 0 ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → ( I ↾ 𝑇 ) ≠ 0 ) |
16 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cdleml8 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → ( 𝑈 ∘ 𝑠 ) = ( I ↾ 𝑇 ) ) |
17 |
16
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) ∧ 𝑈 = 0 ) → ( 𝑈 ∘ 𝑠 ) = ( I ↾ 𝑇 ) ) |
18 |
|
coeq1 |
⊢ ( 𝑈 = 0 → ( 𝑈 ∘ 𝑠 ) = ( 0 ∘ 𝑠 ) ) |
19 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
20 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → 𝑠 ∈ 𝐸 ) |
21 |
1 4 5 12 13
|
tendo0mul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( 0 ∘ 𝑠 ) = 0 ) |
22 |
19 20 21
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → ( 0 ∘ 𝑠 ) = 0 ) |
23 |
18 22
|
sylan9eqr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) ∧ 𝑈 = 0 ) → ( 𝑈 ∘ 𝑠 ) = 0 ) |
24 |
17 23
|
eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) ∧ 𝑈 = 0 ) → ( I ↾ 𝑇 ) = 0 ) |
25 |
24
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → ( 𝑈 = 0 → ( I ↾ 𝑇 ) = 0 ) ) |
26 |
25
|
necon3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → ( ( I ↾ 𝑇 ) ≠ 0 → 𝑈 ≠ 0 ) ) |
27 |
15 26
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 ) ) → 𝑈 ≠ 0 ) |