Step |
Hyp |
Ref |
Expression |
1 |
|
dva1dim.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
dva1dim.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dva1dim.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dva1dim.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dva1dim.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
2 3 5
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑠 ‘ 𝐹 ) ∈ 𝑇 ) |
7 |
1 2 3 4 5
|
tendotp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝑠 ‘ 𝐹 ) ) ≤ ( 𝑅 ‘ 𝐹 ) ) |
8 |
6 7
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑠 ‘ 𝐹 ) ∈ 𝑇 ∧ ( 𝑅 ‘ ( 𝑠 ‘ 𝐹 ) ) ≤ ( 𝑅 ‘ 𝐹 ) ) ) |
9 |
8
|
3expb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) ) → ( ( 𝑠 ‘ 𝐹 ) ∈ 𝑇 ∧ ( 𝑅 ‘ ( 𝑠 ‘ 𝐹 ) ) ≤ ( 𝑅 ‘ 𝐹 ) ) ) |
10 |
9
|
anass1rs |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑠 ∈ 𝐸 ) → ( ( 𝑠 ‘ 𝐹 ) ∈ 𝑇 ∧ ( 𝑅 ‘ ( 𝑠 ‘ 𝐹 ) ) ≤ ( 𝑅 ‘ 𝐹 ) ) ) |
11 |
|
eleq1 |
⊢ ( 𝑔 = ( 𝑠 ‘ 𝐹 ) → ( 𝑔 ∈ 𝑇 ↔ ( 𝑠 ‘ 𝐹 ) ∈ 𝑇 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑔 = ( 𝑠 ‘ 𝐹 ) → ( 𝑅 ‘ 𝑔 ) = ( 𝑅 ‘ ( 𝑠 ‘ 𝐹 ) ) ) |
13 |
12
|
breq1d |
⊢ ( 𝑔 = ( 𝑠 ‘ 𝐹 ) → ( ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) ↔ ( 𝑅 ‘ ( 𝑠 ‘ 𝐹 ) ) ≤ ( 𝑅 ‘ 𝐹 ) ) ) |
14 |
11 13
|
anbi12d |
⊢ ( 𝑔 = ( 𝑠 ‘ 𝐹 ) → ( ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ↔ ( ( 𝑠 ‘ 𝐹 ) ∈ 𝑇 ∧ ( 𝑅 ‘ ( 𝑠 ‘ 𝐹 ) ) ≤ ( 𝑅 ‘ 𝐹 ) ) ) ) |
15 |
10 14
|
syl5ibrcom |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝑔 = ( 𝑠 ‘ 𝐹 ) → ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ) ) |
16 |
15
|
rexlimdva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ∃ 𝑠 ∈ 𝐸 𝑔 = ( 𝑠 ‘ 𝐹 ) → ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ) ) |
17 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
18 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ) → 𝐹 ∈ 𝑇 ) |
19 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ) → 𝑔 ∈ 𝑇 ) |
20 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ) → ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) ) |
21 |
1 2 3 4 5
|
tendoex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ∃ 𝑠 ∈ 𝐸 ( 𝑠 ‘ 𝐹 ) = 𝑔 ) |
22 |
17 18 19 20 21
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ) → ∃ 𝑠 ∈ 𝐸 ( 𝑠 ‘ 𝐹 ) = 𝑔 ) |
23 |
|
eqcom |
⊢ ( ( 𝑠 ‘ 𝐹 ) = 𝑔 ↔ 𝑔 = ( 𝑠 ‘ 𝐹 ) ) |
24 |
23
|
rexbii |
⊢ ( ∃ 𝑠 ∈ 𝐸 ( 𝑠 ‘ 𝐹 ) = 𝑔 ↔ ∃ 𝑠 ∈ 𝐸 𝑔 = ( 𝑠 ‘ 𝐹 ) ) |
25 |
22 24
|
sylib |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ) → ∃ 𝑠 ∈ 𝐸 𝑔 = ( 𝑠 ‘ 𝐹 ) ) |
26 |
25
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ∃ 𝑠 ∈ 𝐸 𝑔 = ( 𝑠 ‘ 𝐹 ) ) ) |
27 |
16 26
|
impbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ∃ 𝑠 ∈ 𝐸 𝑔 = ( 𝑠 ‘ 𝐹 ) ↔ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ) ) |
28 |
27
|
abbidv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → { 𝑔 ∣ ∃ 𝑠 ∈ 𝐸 𝑔 = ( 𝑠 ‘ 𝐹 ) } = { 𝑔 ∣ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) ) } ) |
29 |
|
df-rab |
⊢ { 𝑔 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) } = { 𝑔 ∣ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) ) } |
30 |
28 29
|
eqtr4di |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → { 𝑔 ∣ ∃ 𝑠 ∈ 𝐸 𝑔 = ( 𝑠 ‘ 𝐹 ) } = { 𝑔 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑔 ) ≤ ( 𝑅 ‘ 𝐹 ) } ) |