Metamath Proof Explorer


Theorem dva1dim

Description: Two expressions for the 1-dimensional subspaces of partial vector space A. Remark in Crawley p. 120 line 21, but using a non-identity translation (nonzero vector) F whose trace is P rather than P itself; F exists by cdlemf . E is the division ring base by erngdv , and sF is the scalar product by dvavsca . F must be a non-identity translation for the expression to be a 1-dimensional subspace, although the theorem doesn't require it. (Contributed by NM, 14-Oct-2013)

Ref Expression
Hypotheses dva1dim.l = ( le ‘ 𝐾 )
dva1dim.h 𝐻 = ( LHyp ‘ 𝐾 )
dva1dim.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dva1dim.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
dva1dim.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
Assertion dva1dim ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → { 𝑔 ∣ ∃ 𝑠𝐸 𝑔 = ( 𝑠𝐹 ) } = { 𝑔𝑇 ∣ ( 𝑅𝑔 ) ( 𝑅𝐹 ) } )

Proof

Step Hyp Ref Expression
1 dva1dim.l = ( le ‘ 𝐾 )
2 dva1dim.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dva1dim.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 dva1dim.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
5 dva1dim.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
6 2 3 5 tendocl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑠𝐸𝐹𝑇 ) → ( 𝑠𝐹 ) ∈ 𝑇 )
7 1 2 3 4 5 tendotp ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑠𝐸𝐹𝑇 ) → ( 𝑅 ‘ ( 𝑠𝐹 ) ) ( 𝑅𝐹 ) )
8 6 7 jca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑠𝐸𝐹𝑇 ) → ( ( 𝑠𝐹 ) ∈ 𝑇 ∧ ( 𝑅 ‘ ( 𝑠𝐹 ) ) ( 𝑅𝐹 ) ) )
9 8 3expb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑠𝐸𝐹𝑇 ) ) → ( ( 𝑠𝐹 ) ∈ 𝑇 ∧ ( 𝑅 ‘ ( 𝑠𝐹 ) ) ( 𝑅𝐹 ) ) )
10 9 anass1rs ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ 𝑠𝐸 ) → ( ( 𝑠𝐹 ) ∈ 𝑇 ∧ ( 𝑅 ‘ ( 𝑠𝐹 ) ) ( 𝑅𝐹 ) ) )
11 eleq1 ( 𝑔 = ( 𝑠𝐹 ) → ( 𝑔𝑇 ↔ ( 𝑠𝐹 ) ∈ 𝑇 ) )
12 fveq2 ( 𝑔 = ( 𝑠𝐹 ) → ( 𝑅𝑔 ) = ( 𝑅 ‘ ( 𝑠𝐹 ) ) )
13 12 breq1d ( 𝑔 = ( 𝑠𝐹 ) → ( ( 𝑅𝑔 ) ( 𝑅𝐹 ) ↔ ( 𝑅 ‘ ( 𝑠𝐹 ) ) ( 𝑅𝐹 ) ) )
14 11 13 anbi12d ( 𝑔 = ( 𝑠𝐹 ) → ( ( 𝑔𝑇 ∧ ( 𝑅𝑔 ) ( 𝑅𝐹 ) ) ↔ ( ( 𝑠𝐹 ) ∈ 𝑇 ∧ ( 𝑅 ‘ ( 𝑠𝐹 ) ) ( 𝑅𝐹 ) ) ) )
15 10 14 syl5ibrcom ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ 𝑠𝐸 ) → ( 𝑔 = ( 𝑠𝐹 ) → ( 𝑔𝑇 ∧ ( 𝑅𝑔 ) ( 𝑅𝐹 ) ) ) )
16 15 rexlimdva ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( ∃ 𝑠𝐸 𝑔 = ( 𝑠𝐹 ) → ( 𝑔𝑇 ∧ ( 𝑅𝑔 ) ( 𝑅𝐹 ) ) ) )
17 simpll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑔𝑇 ∧ ( 𝑅𝑔 ) ( 𝑅𝐹 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
18 simplr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑔𝑇 ∧ ( 𝑅𝑔 ) ( 𝑅𝐹 ) ) ) → 𝐹𝑇 )
19 simprl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑔𝑇 ∧ ( 𝑅𝑔 ) ( 𝑅𝐹 ) ) ) → 𝑔𝑇 )
20 simprr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑔𝑇 ∧ ( 𝑅𝑔 ) ( 𝑅𝐹 ) ) ) → ( 𝑅𝑔 ) ( 𝑅𝐹 ) )
21 1 2 3 4 5 tendoex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑔𝑇 ) ∧ ( 𝑅𝑔 ) ( 𝑅𝐹 ) ) → ∃ 𝑠𝐸 ( 𝑠𝐹 ) = 𝑔 )
22 17 18 19 20 21 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑔𝑇 ∧ ( 𝑅𝑔 ) ( 𝑅𝐹 ) ) ) → ∃ 𝑠𝐸 ( 𝑠𝐹 ) = 𝑔 )
23 eqcom ( ( 𝑠𝐹 ) = 𝑔𝑔 = ( 𝑠𝐹 ) )
24 23 rexbii ( ∃ 𝑠𝐸 ( 𝑠𝐹 ) = 𝑔 ↔ ∃ 𝑠𝐸 𝑔 = ( 𝑠𝐹 ) )
25 22 24 sylib ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) ∧ ( 𝑔𝑇 ∧ ( 𝑅𝑔 ) ( 𝑅𝐹 ) ) ) → ∃ 𝑠𝐸 𝑔 = ( 𝑠𝐹 ) )
26 25 ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( ( 𝑔𝑇 ∧ ( 𝑅𝑔 ) ( 𝑅𝐹 ) ) → ∃ 𝑠𝐸 𝑔 = ( 𝑠𝐹 ) ) )
27 16 26 impbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( ∃ 𝑠𝐸 𝑔 = ( 𝑠𝐹 ) ↔ ( 𝑔𝑇 ∧ ( 𝑅𝑔 ) ( 𝑅𝐹 ) ) ) )
28 27 abbidv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → { 𝑔 ∣ ∃ 𝑠𝐸 𝑔 = ( 𝑠𝐹 ) } = { 𝑔 ∣ ( 𝑔𝑇 ∧ ( 𝑅𝑔 ) ( 𝑅𝐹 ) ) } )
29 df-rab { 𝑔𝑇 ∣ ( 𝑅𝑔 ) ( 𝑅𝐹 ) } = { 𝑔 ∣ ( 𝑔𝑇 ∧ ( 𝑅𝑔 ) ( 𝑅𝐹 ) ) }
30 28 29 eqtr4di ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → { 𝑔 ∣ ∃ 𝑠𝐸 𝑔 = ( 𝑠𝐹 ) } = { 𝑔𝑇 ∣ ( 𝑅𝑔 ) ( 𝑅𝐹 ) } )