Step |
Hyp |
Ref |
Expression |
1 |
|
tendoex.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
tendoex.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
tendoex.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
tendoex.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
tendoex.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) → 𝐾 ∈ HL ) |
7 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
8 |
6 7
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) → 𝐾 ∈ OP ) |
9 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
simpl2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) → 𝑁 ∈ 𝑇 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
12 |
11 2 3 4
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑁 ∈ 𝑇 ) → ( 𝑅 ‘ 𝑁 ) ∈ ( Base ‘ 𝐾 ) ) |
13 |
9 10 12
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑅 ‘ 𝑁 ) ∈ ( Base ‘ 𝐾 ) ) |
14 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) |
15 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) |
16 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
17 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
18 |
11 1 16 17
|
leat |
⊢ ( ( ( 𝐾 ∈ OP ∧ ( 𝑅 ‘ 𝑁 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ( ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
19 |
8 13 14 15 18
|
syl31anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) → ( ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
20 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) |
21 |
|
breq2 |
⊢ ( ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) → ( ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ↔ ( 𝑅 ‘ 𝑁 ) ≤ ( 0. ‘ 𝐾 ) ) ) |
22 |
20 21
|
syl5ibcom |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ( ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) → ( 𝑅 ‘ 𝑁 ) ≤ ( 0. ‘ 𝐾 ) ) ) |
23 |
22
|
imp |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → ( 𝑅 ‘ 𝑁 ) ≤ ( 0. ‘ 𝐾 ) ) |
24 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → 𝐾 ∈ HL ) |
25 |
24 7
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → 𝐾 ∈ OP ) |
26 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
27 |
|
simpl2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → 𝑁 ∈ 𝑇 ) |
28 |
26 27 12
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → ( 𝑅 ‘ 𝑁 ) ∈ ( Base ‘ 𝐾 ) ) |
29 |
11 1 16
|
ople0 |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑅 ‘ 𝑁 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 ‘ 𝑁 ) ≤ ( 0. ‘ 𝐾 ) ↔ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
30 |
25 28 29
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → ( ( 𝑅 ‘ 𝑁 ) ≤ ( 0. ‘ 𝐾 ) ↔ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
31 |
23 30
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) |
32 |
31
|
olcd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → ( ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
33 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
34 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → 𝐹 ∈ 𝑇 ) |
35 |
16 17 2 3 4
|
trlator0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ∨ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) ) |
36 |
33 34 35
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ∨ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) ) |
37 |
19 32 36
|
mpjaodan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ( ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
38 |
37
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ( ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
39 |
|
eqcom |
⊢ ( ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝐹 ) ↔ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) |
40 |
2 3 4 5
|
cdlemk |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) → ∃ 𝑢 ∈ 𝐸 ( 𝑢 ‘ 𝐹 ) = 𝑁 ) |
41 |
40
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) → ∃ 𝑢 ∈ 𝐸 ( 𝑢 ‘ 𝐹 ) = 𝑁 ) |
42 |
39 41
|
sylan2b |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝐹 ) ) → ∃ 𝑢 ∈ 𝐸 ( 𝑢 ‘ 𝐹 ) = 𝑁 ) |
43 |
|
eqid |
⊢ ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) |
44 |
11 2 3 5 43
|
tendo0cl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ 𝐸 ) |
45 |
44
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) → ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ 𝐸 ) |
46 |
|
simplrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) → 𝐹 ∈ 𝑇 ) |
47 |
43 11
|
tendo02 |
⊢ ( 𝐹 ∈ 𝑇 → ( ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ‘ 𝐹 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
48 |
46 47
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) → ( ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ‘ 𝐹 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
49 |
11 16 2 3 4
|
trlid0b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑁 ∈ 𝑇 ) → ( 𝑁 = ( I ↾ ( Base ‘ 𝐾 ) ) ↔ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
50 |
49
|
adantrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) → ( 𝑁 = ( I ↾ ( Base ‘ 𝐾 ) ) ↔ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
51 |
50
|
biimpar |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) → 𝑁 = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
52 |
48 51
|
eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) → ( ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ‘ 𝐹 ) = 𝑁 ) |
53 |
|
fveq1 |
⊢ ( 𝑢 = ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝑢 ‘ 𝐹 ) = ( ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ‘ 𝐹 ) ) |
54 |
53
|
eqeq1d |
⊢ ( 𝑢 = ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑢 ‘ 𝐹 ) = 𝑁 ↔ ( ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ‘ 𝐹 ) = 𝑁 ) ) |
55 |
54
|
rspcev |
⊢ ( ( ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ 𝐸 ∧ ( ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ‘ 𝐹 ) = 𝑁 ) → ∃ 𝑢 ∈ 𝐸 ( 𝑢 ‘ 𝐹 ) = 𝑁 ) |
56 |
45 52 55
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) → ∃ 𝑢 ∈ 𝐸 ( 𝑢 ‘ 𝐹 ) = 𝑁 ) |
57 |
42 56
|
jaodan |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) → ∃ 𝑢 ∈ 𝐸 ( 𝑢 ‘ 𝐹 ) = 𝑁 ) |
58 |
38 57
|
syldan |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ∃ 𝑢 ∈ 𝐸 ( 𝑢 ‘ 𝐹 ) = 𝑁 ) |
59 |
58
|
3impa |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ∃ 𝑢 ∈ 𝐸 ( 𝑢 ‘ 𝐹 ) = 𝑁 ) |