| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tendoex.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
tendoex.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 3 |
|
tendoex.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
tendoex.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
tendoex.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) → 𝐾 ∈ HL ) |
| 7 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 8 |
6 7
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) → 𝐾 ∈ OP ) |
| 9 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
simpl2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) → 𝑁 ∈ 𝑇 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 12 |
11 2 3 4
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑁 ∈ 𝑇 ) → ( 𝑅 ‘ 𝑁 ) ∈ ( Base ‘ 𝐾 ) ) |
| 13 |
9 10 12
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑅 ‘ 𝑁 ) ∈ ( Base ‘ 𝐾 ) ) |
| 14 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 15 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) |
| 16 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 17 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
| 18 |
11 1 16 17
|
leat |
⊢ ( ( ( 𝐾 ∈ OP ∧ ( 𝑅 ‘ 𝑁 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ( ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
| 19 |
8 13 14 15 18
|
syl31anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ) → ( ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
| 20 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) |
| 21 |
|
breq2 |
⊢ ( ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) → ( ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ↔ ( 𝑅 ‘ 𝑁 ) ≤ ( 0. ‘ 𝐾 ) ) ) |
| 22 |
20 21
|
syl5ibcom |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ( ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) → ( 𝑅 ‘ 𝑁 ) ≤ ( 0. ‘ 𝐾 ) ) ) |
| 23 |
22
|
imp |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → ( 𝑅 ‘ 𝑁 ) ≤ ( 0. ‘ 𝐾 ) ) |
| 24 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → 𝐾 ∈ HL ) |
| 25 |
24 7
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → 𝐾 ∈ OP ) |
| 26 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 27 |
|
simpl2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → 𝑁 ∈ 𝑇 ) |
| 28 |
26 27 12
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → ( 𝑅 ‘ 𝑁 ) ∈ ( Base ‘ 𝐾 ) ) |
| 29 |
11 1 16
|
ople0 |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑅 ‘ 𝑁 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 ‘ 𝑁 ) ≤ ( 0. ‘ 𝐾 ) ↔ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
| 30 |
25 28 29
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → ( ( 𝑅 ‘ 𝑁 ) ≤ ( 0. ‘ 𝐾 ) ↔ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
| 31 |
23 30
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) |
| 32 |
31
|
olcd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) → ( ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
| 33 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 34 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → 𝐹 ∈ 𝑇 ) |
| 35 |
16 17 2 3 4
|
trlator0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ∨ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) ) |
| 36 |
33 34 35
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∈ ( Atoms ‘ 𝐾 ) ∨ ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) ) |
| 37 |
19 32 36
|
mpjaodan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ( ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
| 38 |
37
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ( ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
| 39 |
|
eqcom |
⊢ ( ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝐹 ) ↔ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) |
| 40 |
2 3 4 5
|
cdlemk |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) → ∃ 𝑢 ∈ 𝐸 ( 𝑢 ‘ 𝐹 ) = 𝑁 ) |
| 41 |
40
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) → ∃ 𝑢 ∈ 𝐸 ( 𝑢 ‘ 𝐹 ) = 𝑁 ) |
| 42 |
39 41
|
sylan2b |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝐹 ) ) → ∃ 𝑢 ∈ 𝐸 ( 𝑢 ‘ 𝐹 ) = 𝑁 ) |
| 43 |
|
eqid |
⊢ ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) |
| 44 |
11 2 3 5 43
|
tendo0cl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ 𝐸 ) |
| 45 |
44
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) → ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ 𝐸 ) |
| 46 |
|
simplrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) → 𝐹 ∈ 𝑇 ) |
| 47 |
43 11
|
tendo02 |
⊢ ( 𝐹 ∈ 𝑇 → ( ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ‘ 𝐹 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
| 48 |
46 47
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) → ( ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ‘ 𝐹 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
| 49 |
11 16 2 3 4
|
trlid0b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑁 ∈ 𝑇 ) → ( 𝑁 = ( I ↾ ( Base ‘ 𝐾 ) ) ↔ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
| 50 |
49
|
adantrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) → ( 𝑁 = ( I ↾ ( Base ‘ 𝐾 ) ) ↔ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) |
| 51 |
50
|
biimpar |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) → 𝑁 = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
| 52 |
48 51
|
eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) → ( ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ‘ 𝐹 ) = 𝑁 ) |
| 53 |
|
fveq1 |
⊢ ( 𝑢 = ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝑢 ‘ 𝐹 ) = ( ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ‘ 𝐹 ) ) |
| 54 |
53
|
eqeq1d |
⊢ ( 𝑢 = ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑢 ‘ 𝐹 ) = 𝑁 ↔ ( ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ‘ 𝐹 ) = 𝑁 ) ) |
| 55 |
54
|
rspcev |
⊢ ( ( ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ 𝐸 ∧ ( ( ℎ ∈ 𝑇 ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ‘ 𝐹 ) = 𝑁 ) → ∃ 𝑢 ∈ 𝐸 ( 𝑢 ‘ 𝐹 ) = 𝑁 ) |
| 56 |
45 52 55
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) → ∃ 𝑢 ∈ 𝐸 ( 𝑢 ‘ 𝐹 ) = 𝑁 ) |
| 57 |
42 56
|
jaodan |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( ( 𝑅 ‘ 𝑁 ) = ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝑁 ) = ( 0. ‘ 𝐾 ) ) ) → ∃ 𝑢 ∈ 𝐸 ( 𝑢 ‘ 𝐹 ) = 𝑁 ) |
| 58 |
38 57
|
syldan |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ∃ 𝑢 ∈ 𝐸 ( 𝑢 ‘ 𝐹 ) = 𝑁 ) |
| 59 |
58
|
3impa |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑁 ) ≤ ( 𝑅 ‘ 𝐹 ) ) → ∃ 𝑢 ∈ 𝐸 ( 𝑢 ‘ 𝐹 ) = 𝑁 ) |