Step |
Hyp |
Ref |
Expression |
1 |
|
tendoex.l |
|- .<_ = ( le ` K ) |
2 |
|
tendoex.h |
|- H = ( LHyp ` K ) |
3 |
|
tendoex.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
tendoex.r |
|- R = ( ( trL ` K ) ` W ) |
5 |
|
tendoex.e |
|- E = ( ( TEndo ` K ) ` W ) |
6 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) /\ ( R ` F ) e. ( Atoms ` K ) ) -> K e. HL ) |
7 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
8 |
6 7
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) /\ ( R ` F ) e. ( Atoms ` K ) ) -> K e. OP ) |
9 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) /\ ( R ` F ) e. ( Atoms ` K ) ) -> ( K e. HL /\ W e. H ) ) |
10 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) /\ ( R ` F ) e. ( Atoms ` K ) ) -> N e. T ) |
11 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
12 |
11 2 3 4
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ N e. T ) -> ( R ` N ) e. ( Base ` K ) ) |
13 |
9 10 12
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) /\ ( R ` F ) e. ( Atoms ` K ) ) -> ( R ` N ) e. ( Base ` K ) ) |
14 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) /\ ( R ` F ) e. ( Atoms ` K ) ) -> ( R ` F ) e. ( Atoms ` K ) ) |
15 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) /\ ( R ` F ) e. ( Atoms ` K ) ) -> ( R ` N ) .<_ ( R ` F ) ) |
16 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
17 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
18 |
11 1 16 17
|
leat |
|- ( ( ( K e. OP /\ ( R ` N ) e. ( Base ` K ) /\ ( R ` F ) e. ( Atoms ` K ) ) /\ ( R ` N ) .<_ ( R ` F ) ) -> ( ( R ` N ) = ( R ` F ) \/ ( R ` N ) = ( 0. ` K ) ) ) |
19 |
8 13 14 15 18
|
syl31anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) /\ ( R ` F ) e. ( Atoms ` K ) ) -> ( ( R ` N ) = ( R ` F ) \/ ( R ` N ) = ( 0. ` K ) ) ) |
20 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) -> ( R ` N ) .<_ ( R ` F ) ) |
21 |
|
breq2 |
|- ( ( R ` F ) = ( 0. ` K ) -> ( ( R ` N ) .<_ ( R ` F ) <-> ( R ` N ) .<_ ( 0. ` K ) ) ) |
22 |
20 21
|
syl5ibcom |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) -> ( ( R ` F ) = ( 0. ` K ) -> ( R ` N ) .<_ ( 0. ` K ) ) ) |
23 |
22
|
imp |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( R ` N ) .<_ ( 0. ` K ) ) |
24 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> K e. HL ) |
25 |
24 7
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> K e. OP ) |
26 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( K e. HL /\ W e. H ) ) |
27 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> N e. T ) |
28 |
26 27 12
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( R ` N ) e. ( Base ` K ) ) |
29 |
11 1 16
|
ople0 |
|- ( ( K e. OP /\ ( R ` N ) e. ( Base ` K ) ) -> ( ( R ` N ) .<_ ( 0. ` K ) <-> ( R ` N ) = ( 0. ` K ) ) ) |
30 |
25 28 29
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( ( R ` N ) .<_ ( 0. ` K ) <-> ( R ` N ) = ( 0. ` K ) ) ) |
31 |
23 30
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( R ` N ) = ( 0. ` K ) ) |
32 |
31
|
olcd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( ( R ` N ) = ( R ` F ) \/ ( R ` N ) = ( 0. ` K ) ) ) |
33 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) -> ( K e. HL /\ W e. H ) ) |
34 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) -> F e. T ) |
35 |
16 17 2 3 4
|
trlator0 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) e. ( Atoms ` K ) \/ ( R ` F ) = ( 0. ` K ) ) ) |
36 |
33 34 35
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) -> ( ( R ` F ) e. ( Atoms ` K ) \/ ( R ` F ) = ( 0. ` K ) ) ) |
37 |
19 32 36
|
mpjaodan |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) -> ( ( R ` N ) = ( R ` F ) \/ ( R ` N ) = ( 0. ` K ) ) ) |
38 |
37
|
3expa |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) ) /\ ( R ` N ) .<_ ( R ` F ) ) -> ( ( R ` N ) = ( R ` F ) \/ ( R ` N ) = ( 0. ` K ) ) ) |
39 |
|
eqcom |
|- ( ( R ` N ) = ( R ` F ) <-> ( R ` F ) = ( R ` N ) ) |
40 |
2 3 4 5
|
cdlemk |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` F ) = ( R ` N ) ) -> E. u e. E ( u ` F ) = N ) |
41 |
40
|
3expa |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) ) /\ ( R ` F ) = ( R ` N ) ) -> E. u e. E ( u ` F ) = N ) |
42 |
39 41
|
sylan2b |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) ) /\ ( R ` N ) = ( R ` F ) ) -> E. u e. E ( u ` F ) = N ) |
43 |
|
eqid |
|- ( h e. T |-> ( _I |` ( Base ` K ) ) ) = ( h e. T |-> ( _I |` ( Base ` K ) ) ) |
44 |
11 2 3 5 43
|
tendo0cl |
|- ( ( K e. HL /\ W e. H ) -> ( h e. T |-> ( _I |` ( Base ` K ) ) ) e. E ) |
45 |
44
|
ad2antrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) ) /\ ( R ` N ) = ( 0. ` K ) ) -> ( h e. T |-> ( _I |` ( Base ` K ) ) ) e. E ) |
46 |
|
simplrl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) ) /\ ( R ` N ) = ( 0. ` K ) ) -> F e. T ) |
47 |
43 11
|
tendo02 |
|- ( F e. T -> ( ( h e. T |-> ( _I |` ( Base ` K ) ) ) ` F ) = ( _I |` ( Base ` K ) ) ) |
48 |
46 47
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) ) /\ ( R ` N ) = ( 0. ` K ) ) -> ( ( h e. T |-> ( _I |` ( Base ` K ) ) ) ` F ) = ( _I |` ( Base ` K ) ) ) |
49 |
11 16 2 3 4
|
trlid0b |
|- ( ( ( K e. HL /\ W e. H ) /\ N e. T ) -> ( N = ( _I |` ( Base ` K ) ) <-> ( R ` N ) = ( 0. ` K ) ) ) |
50 |
49
|
adantrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) ) -> ( N = ( _I |` ( Base ` K ) ) <-> ( R ` N ) = ( 0. ` K ) ) ) |
51 |
50
|
biimpar |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) ) /\ ( R ` N ) = ( 0. ` K ) ) -> N = ( _I |` ( Base ` K ) ) ) |
52 |
48 51
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) ) /\ ( R ` N ) = ( 0. ` K ) ) -> ( ( h e. T |-> ( _I |` ( Base ` K ) ) ) ` F ) = N ) |
53 |
|
fveq1 |
|- ( u = ( h e. T |-> ( _I |` ( Base ` K ) ) ) -> ( u ` F ) = ( ( h e. T |-> ( _I |` ( Base ` K ) ) ) ` F ) ) |
54 |
53
|
eqeq1d |
|- ( u = ( h e. T |-> ( _I |` ( Base ` K ) ) ) -> ( ( u ` F ) = N <-> ( ( h e. T |-> ( _I |` ( Base ` K ) ) ) ` F ) = N ) ) |
55 |
54
|
rspcev |
|- ( ( ( h e. T |-> ( _I |` ( Base ` K ) ) ) e. E /\ ( ( h e. T |-> ( _I |` ( Base ` K ) ) ) ` F ) = N ) -> E. u e. E ( u ` F ) = N ) |
56 |
45 52 55
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) ) /\ ( R ` N ) = ( 0. ` K ) ) -> E. u e. E ( u ` F ) = N ) |
57 |
42 56
|
jaodan |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) ) /\ ( ( R ` N ) = ( R ` F ) \/ ( R ` N ) = ( 0. ` K ) ) ) -> E. u e. E ( u ` F ) = N ) |
58 |
38 57
|
syldan |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) ) /\ ( R ` N ) .<_ ( R ` F ) ) -> E. u e. E ( u ` F ) = N ) |
59 |
58
|
3impa |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( R ` N ) .<_ ( R ` F ) ) -> E. u e. E ( u ` F ) = N ) |