Step |
Hyp |
Ref |
Expression |
1 |
|
cdleml1.b |
|- B = ( Base ` K ) |
2 |
|
cdleml1.h |
|- H = ( LHyp ` K ) |
3 |
|
cdleml1.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
cdleml1.r |
|- R = ( ( trL ` K ) ` W ) |
5 |
|
cdleml1.e |
|- E = ( ( TEndo ` K ) ` W ) |
6 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> ( K e. HL /\ W e. H ) ) |
7 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> U e. E ) |
8 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> f e. T ) |
9 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
10 |
9 2 3 4 5
|
tendotp |
|- ( ( ( K e. HL /\ W e. H ) /\ U e. E /\ f e. T ) -> ( R ` ( U ` f ) ) ( le ` K ) ( R ` f ) ) |
11 |
6 7 8 10
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> ( R ` ( U ` f ) ) ( le ` K ) ( R ` f ) ) |
12 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> K e. HL ) |
13 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
14 |
12 13
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> K e. AtLat ) |
15 |
2 3 5
|
tendocl |
|- ( ( ( K e. HL /\ W e. H ) /\ U e. E /\ f e. T ) -> ( U ` f ) e. T ) |
16 |
6 7 8 15
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> ( U ` f ) e. T ) |
17 |
|
simp32 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> ( U ` f ) =/= ( _I |` B ) ) |
18 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
19 |
1 18 2 3 4
|
trlnidat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U ` f ) e. T /\ ( U ` f ) =/= ( _I |` B ) ) -> ( R ` ( U ` f ) ) e. ( Atoms ` K ) ) |
20 |
6 16 17 19
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> ( R ` ( U ` f ) ) e. ( Atoms ` K ) ) |
21 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> f =/= ( _I |` B ) ) |
22 |
1 18 2 3 4
|
trlnidat |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. T /\ f =/= ( _I |` B ) ) -> ( R ` f ) e. ( Atoms ` K ) ) |
23 |
6 8 21 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> ( R ` f ) e. ( Atoms ` K ) ) |
24 |
9 18
|
atcmp |
|- ( ( K e. AtLat /\ ( R ` ( U ` f ) ) e. ( Atoms ` K ) /\ ( R ` f ) e. ( Atoms ` K ) ) -> ( ( R ` ( U ` f ) ) ( le ` K ) ( R ` f ) <-> ( R ` ( U ` f ) ) = ( R ` f ) ) ) |
25 |
14 20 23 24
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> ( ( R ` ( U ` f ) ) ( le ` K ) ( R ` f ) <-> ( R ` ( U ` f ) ) = ( R ` f ) ) ) |
26 |
11 25
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> ( R ` ( U ` f ) ) = ( R ` f ) ) |
27 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> V e. E ) |
28 |
9 2 3 4 5
|
tendotp |
|- ( ( ( K e. HL /\ W e. H ) /\ V e. E /\ f e. T ) -> ( R ` ( V ` f ) ) ( le ` K ) ( R ` f ) ) |
29 |
6 27 8 28
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> ( R ` ( V ` f ) ) ( le ` K ) ( R ` f ) ) |
30 |
2 3 5
|
tendocl |
|- ( ( ( K e. HL /\ W e. H ) /\ V e. E /\ f e. T ) -> ( V ` f ) e. T ) |
31 |
6 27 8 30
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> ( V ` f ) e. T ) |
32 |
|
simp33 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> ( V ` f ) =/= ( _I |` B ) ) |
33 |
1 18 2 3 4
|
trlnidat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( V ` f ) e. T /\ ( V ` f ) =/= ( _I |` B ) ) -> ( R ` ( V ` f ) ) e. ( Atoms ` K ) ) |
34 |
6 31 32 33
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> ( R ` ( V ` f ) ) e. ( Atoms ` K ) ) |
35 |
9 18
|
atcmp |
|- ( ( K e. AtLat /\ ( R ` ( V ` f ) ) e. ( Atoms ` K ) /\ ( R ` f ) e. ( Atoms ` K ) ) -> ( ( R ` ( V ` f ) ) ( le ` K ) ( R ` f ) <-> ( R ` ( V ` f ) ) = ( R ` f ) ) ) |
36 |
14 34 23 35
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> ( ( R ` ( V ` f ) ) ( le ` K ) ( R ` f ) <-> ( R ` ( V ` f ) ) = ( R ` f ) ) ) |
37 |
29 36
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> ( R ` ( V ` f ) ) = ( R ` f ) ) |
38 |
26 37
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ f e. T ) /\ ( f =/= ( _I |` B ) /\ ( U ` f ) =/= ( _I |` B ) /\ ( V ` f ) =/= ( _I |` B ) ) ) -> ( R ` ( U ` f ) ) = ( R ` ( V ` f ) ) ) |