Metamath Proof Explorer


Theorem cdleml1N

Description: Part of proof of Lemma L of Crawley p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleml1.b B=BaseK
cdleml1.h H=LHypK
cdleml1.t T=LTrnKW
cdleml1.r R=trLKW
cdleml1.e E=TEndoKW
Assertion cdleml1N KHLWHUEVEfTfIBUfIBVfIBRUf=RVf

Proof

Step Hyp Ref Expression
1 cdleml1.b B=BaseK
2 cdleml1.h H=LHypK
3 cdleml1.t T=LTrnKW
4 cdleml1.r R=trLKW
5 cdleml1.e E=TEndoKW
6 simp1 KHLWHUEVEfTfIBUfIBVfIBKHLWH
7 simp21 KHLWHUEVEfTfIBUfIBVfIBUE
8 simp23 KHLWHUEVEfTfIBUfIBVfIBfT
9 eqid K=K
10 9 2 3 4 5 tendotp KHLWHUEfTRUfKRf
11 6 7 8 10 syl3anc KHLWHUEVEfTfIBUfIBVfIBRUfKRf
12 simp1l KHLWHUEVEfTfIBUfIBVfIBKHL
13 hlatl KHLKAtLat
14 12 13 syl KHLWHUEVEfTfIBUfIBVfIBKAtLat
15 2 3 5 tendocl KHLWHUEfTUfT
16 6 7 8 15 syl3anc KHLWHUEVEfTfIBUfIBVfIBUfT
17 simp32 KHLWHUEVEfTfIBUfIBVfIBUfIB
18 eqid AtomsK=AtomsK
19 1 18 2 3 4 trlnidat KHLWHUfTUfIBRUfAtomsK
20 6 16 17 19 syl3anc KHLWHUEVEfTfIBUfIBVfIBRUfAtomsK
21 simp31 KHLWHUEVEfTfIBUfIBVfIBfIB
22 1 18 2 3 4 trlnidat KHLWHfTfIBRfAtomsK
23 6 8 21 22 syl3anc KHLWHUEVEfTfIBUfIBVfIBRfAtomsK
24 9 18 atcmp KAtLatRUfAtomsKRfAtomsKRUfKRfRUf=Rf
25 14 20 23 24 syl3anc KHLWHUEVEfTfIBUfIBVfIBRUfKRfRUf=Rf
26 11 25 mpbid KHLWHUEVEfTfIBUfIBVfIBRUf=Rf
27 simp22 KHLWHUEVEfTfIBUfIBVfIBVE
28 9 2 3 4 5 tendotp KHLWHVEfTRVfKRf
29 6 27 8 28 syl3anc KHLWHUEVEfTfIBUfIBVfIBRVfKRf
30 2 3 5 tendocl KHLWHVEfTVfT
31 6 27 8 30 syl3anc KHLWHUEVEfTfIBUfIBVfIBVfT
32 simp33 KHLWHUEVEfTfIBUfIBVfIBVfIB
33 1 18 2 3 4 trlnidat KHLWHVfTVfIBRVfAtomsK
34 6 31 32 33 syl3anc KHLWHUEVEfTfIBUfIBVfIBRVfAtomsK
35 9 18 atcmp KAtLatRVfAtomsKRfAtomsKRVfKRfRVf=Rf
36 14 34 23 35 syl3anc KHLWHUEVEfTfIBUfIBVfIBRVfKRfRVf=Rf
37 29 36 mpbid KHLWHUEVEfTfIBUfIBVfIBRVf=Rf
38 26 37 eqtr4d KHLWHUEVEfTfIBUfIBVfIBRUf=RVf