Metamath Proof Explorer


Theorem cdleml1N

Description: Part of proof of Lemma L of Crawley p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleml1.b B = Base K
cdleml1.h H = LHyp K
cdleml1.t T = LTrn K W
cdleml1.r R = trL K W
cdleml1.e E = TEndo K W
Assertion cdleml1N K HL W H U E V E f T f I B U f I B V f I B R U f = R V f

Proof

Step Hyp Ref Expression
1 cdleml1.b B = Base K
2 cdleml1.h H = LHyp K
3 cdleml1.t T = LTrn K W
4 cdleml1.r R = trL K W
5 cdleml1.e E = TEndo K W
6 simp1 K HL W H U E V E f T f I B U f I B V f I B K HL W H
7 simp21 K HL W H U E V E f T f I B U f I B V f I B U E
8 simp23 K HL W H U E V E f T f I B U f I B V f I B f T
9 eqid K = K
10 9 2 3 4 5 tendotp K HL W H U E f T R U f K R f
11 6 7 8 10 syl3anc K HL W H U E V E f T f I B U f I B V f I B R U f K R f
12 simp1l K HL W H U E V E f T f I B U f I B V f I B K HL
13 hlatl K HL K AtLat
14 12 13 syl K HL W H U E V E f T f I B U f I B V f I B K AtLat
15 2 3 5 tendocl K HL W H U E f T U f T
16 6 7 8 15 syl3anc K HL W H U E V E f T f I B U f I B V f I B U f T
17 simp32 K HL W H U E V E f T f I B U f I B V f I B U f I B
18 eqid Atoms K = Atoms K
19 1 18 2 3 4 trlnidat K HL W H U f T U f I B R U f Atoms K
20 6 16 17 19 syl3anc K HL W H U E V E f T f I B U f I B V f I B R U f Atoms K
21 simp31 K HL W H U E V E f T f I B U f I B V f I B f I B
22 1 18 2 3 4 trlnidat K HL W H f T f I B R f Atoms K
23 6 8 21 22 syl3anc K HL W H U E V E f T f I B U f I B V f I B R f Atoms K
24 9 18 atcmp K AtLat R U f Atoms K R f Atoms K R U f K R f R U f = R f
25 14 20 23 24 syl3anc K HL W H U E V E f T f I B U f I B V f I B R U f K R f R U f = R f
26 11 25 mpbid K HL W H U E V E f T f I B U f I B V f I B R U f = R f
27 simp22 K HL W H U E V E f T f I B U f I B V f I B V E
28 9 2 3 4 5 tendotp K HL W H V E f T R V f K R f
29 6 27 8 28 syl3anc K HL W H U E V E f T f I B U f I B V f I B R V f K R f
30 2 3 5 tendocl K HL W H V E f T V f T
31 6 27 8 30 syl3anc K HL W H U E V E f T f I B U f I B V f I B V f T
32 simp33 K HL W H U E V E f T f I B U f I B V f I B V f I B
33 1 18 2 3 4 trlnidat K HL W H V f T V f I B R V f Atoms K
34 6 31 32 33 syl3anc K HL W H U E V E f T f I B U f I B V f I B R V f Atoms K
35 9 18 atcmp K AtLat R V f Atoms K R f Atoms K R V f K R f R V f = R f
36 14 34 23 35 syl3anc K HL W H U E V E f T f I B U f I B V f I B R V f K R f R V f = R f
37 29 36 mpbid K HL W H U E V E f T f I B U f I B V f I B R V f = R f
38 26 37 eqtr4d K HL W H U E V E f T f I B U f I B V f I B R U f = R V f