Metamath Proof Explorer


Theorem cdleml9

Description: Part of proof of Lemma L of Crawley p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013)

Ref Expression
Hypotheses cdleml6.b B = Base K
cdleml6.j ˙ = join K
cdleml6.m ˙ = meet K
cdleml6.h H = LHyp K
cdleml6.t T = LTrn K W
cdleml6.r R = trL K W
cdleml6.p Q = oc K W
cdleml6.z Z = Q ˙ R b ˙ h Q ˙ R b s h -1
cdleml6.y Y = Q ˙ R g ˙ Z ˙ R g b -1
cdleml6.x X = ι z T | b T b I B R b R s h R b R g z Q = Y
cdleml6.u U = g T if s h = h g X
cdleml6.e E = TEndo K W
cdleml6.o 0 ˙ = f T I B
Assertion cdleml9 K HL W H h T h I B s E s 0 ˙ U 0 ˙

Proof

Step Hyp Ref Expression
1 cdleml6.b B = Base K
2 cdleml6.j ˙ = join K
3 cdleml6.m ˙ = meet K
4 cdleml6.h H = LHyp K
5 cdleml6.t T = LTrn K W
6 cdleml6.r R = trL K W
7 cdleml6.p Q = oc K W
8 cdleml6.z Z = Q ˙ R b ˙ h Q ˙ R b s h -1
9 cdleml6.y Y = Q ˙ R g ˙ Z ˙ R g b -1
10 cdleml6.x X = ι z T | b T b I B R b R s h R b R g z Q = Y
11 cdleml6.u U = g T if s h = h g X
12 cdleml6.e E = TEndo K W
13 cdleml6.o 0 ˙ = f T I B
14 1 4 5 12 13 tendo1ne0 K HL W H I T 0 ˙
15 14 3ad2ant1 K HL W H h T h I B s E s 0 ˙ I T 0 ˙
16 1 2 3 4 5 6 7 8 9 10 11 12 13 cdleml8 K HL W H h T h I B s E s 0 ˙ U s = I T
17 16 adantr K HL W H h T h I B s E s 0 ˙ U = 0 ˙ U s = I T
18 coeq1 U = 0 ˙ U s = 0 ˙ s
19 simp1 K HL W H h T h I B s E s 0 ˙ K HL W H
20 simp3l K HL W H h T h I B s E s 0 ˙ s E
21 1 4 5 12 13 tendo0mul K HL W H s E 0 ˙ s = 0 ˙
22 19 20 21 syl2anc K HL W H h T h I B s E s 0 ˙ 0 ˙ s = 0 ˙
23 18 22 sylan9eqr K HL W H h T h I B s E s 0 ˙ U = 0 ˙ U s = 0 ˙
24 17 23 eqtr3d K HL W H h T h I B s E s 0 ˙ U = 0 ˙ I T = 0 ˙
25 24 ex K HL W H h T h I B s E s 0 ˙ U = 0 ˙ I T = 0 ˙
26 25 necon3d K HL W H h T h I B s E s 0 ˙ I T 0 ˙ U 0 ˙
27 15 26 mpd K HL W H h T h I B s E s 0 ˙ U 0 ˙