Metamath Proof Explorer


Theorem cdleml9

Description: Part of proof of Lemma L of Crawley p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013)

Ref Expression
Hypotheses cdleml6.b B=BaseK
cdleml6.j ˙=joinK
cdleml6.m ˙=meetK
cdleml6.h H=LHypK
cdleml6.t T=LTrnKW
cdleml6.r R=trLKW
cdleml6.p Q=ocKW
cdleml6.z Z=Q˙Rb˙hQ˙Rbsh-1
cdleml6.y Y=Q˙Rg˙Z˙Rgb-1
cdleml6.x X=ιzT|bTbIBRbRshRbRgzQ=Y
cdleml6.u U=gTifsh=hgX
cdleml6.e E=TEndoKW
cdleml6.o 0˙=fTIB
Assertion cdleml9 KHLWHhThIBsEs0˙U0˙

Proof

Step Hyp Ref Expression
1 cdleml6.b B=BaseK
2 cdleml6.j ˙=joinK
3 cdleml6.m ˙=meetK
4 cdleml6.h H=LHypK
5 cdleml6.t T=LTrnKW
6 cdleml6.r R=trLKW
7 cdleml6.p Q=ocKW
8 cdleml6.z Z=Q˙Rb˙hQ˙Rbsh-1
9 cdleml6.y Y=Q˙Rg˙Z˙Rgb-1
10 cdleml6.x X=ιzT|bTbIBRbRshRbRgzQ=Y
11 cdleml6.u U=gTifsh=hgX
12 cdleml6.e E=TEndoKW
13 cdleml6.o 0˙=fTIB
14 1 4 5 12 13 tendo1ne0 KHLWHIT0˙
15 14 3ad2ant1 KHLWHhThIBsEs0˙IT0˙
16 1 2 3 4 5 6 7 8 9 10 11 12 13 cdleml8 KHLWHhThIBsEs0˙Us=IT
17 16 adantr KHLWHhThIBsEs0˙U=0˙Us=IT
18 coeq1 U=0˙Us=0˙s
19 simp1 KHLWHhThIBsEs0˙KHLWH
20 simp3l KHLWHhThIBsEs0˙sE
21 1 4 5 12 13 tendo0mul KHLWHsE0˙s=0˙
22 19 20 21 syl2anc KHLWHhThIBsEs0˙0˙s=0˙
23 18 22 sylan9eqr KHLWHhThIBsEs0˙U=0˙Us=0˙
24 17 23 eqtr3d KHLWHhThIBsEs0˙U=0˙IT=0˙
25 24 ex KHLWHhThIBsEs0˙U=0˙IT=0˙
26 25 necon3d KHLWHhThIBsEs0˙IT0˙U0˙
27 15 26 mpd KHLWHhThIBsEs0˙U0˙