Metamath Proof Explorer


Theorem erngdvlem4

Description: Lemma for erngdv . (Contributed by NM, 11-Aug-2013)

Ref Expression
Hypotheses ernggrp.h H = LHyp K
ernggrp.d D = EDRing K W
erngdv.b B = Base K
erngdv.t T = LTrn K W
erngdv.e E = TEndo K W
erngdv.p P = a E , b E f T a f b f
erngdv.o 0 ˙ = f T I B
erngdv.i I = a E f T a f -1
erngrnglem.m + ˙ = a E , b E a b
edlemk6.j ˙ = join K
edlemk6.m ˙ = meet K
edlemk6.r R = trL K W
edlemk6.p Q = oc K W
edlemk6.z Z = Q ˙ R b ˙ h Q ˙ R b s h -1
edlemk6.y Y = Q ˙ R g ˙ Z ˙ R g b -1
edlemk6.x X = ι z T | b T b I B R b R s h R b R g z Q = Y
edlemk6.u U = g T if s h = h g X
Assertion erngdvlem4 K HL W H h T h I B D DivRing

Proof

Step Hyp Ref Expression
1 ernggrp.h H = LHyp K
2 ernggrp.d D = EDRing K W
3 erngdv.b B = Base K
4 erngdv.t T = LTrn K W
5 erngdv.e E = TEndo K W
6 erngdv.p P = a E , b E f T a f b f
7 erngdv.o 0 ˙ = f T I B
8 erngdv.i I = a E f T a f -1
9 erngrnglem.m + ˙ = a E , b E a b
10 edlemk6.j ˙ = join K
11 edlemk6.m ˙ = meet K
12 edlemk6.r R = trL K W
13 edlemk6.p Q = oc K W
14 edlemk6.z Z = Q ˙ R b ˙ h Q ˙ R b s h -1
15 edlemk6.y Y = Q ˙ R g ˙ Z ˙ R g b -1
16 edlemk6.x X = ι z T | b T b I B R b R s h R b R g z Q = Y
17 edlemk6.u U = g T if s h = h g X
18 eqid Base D = Base D
19 1 4 5 2 18 erngbase K HL W H Base D = E
20 19 eqcomd K HL W H E = Base D
21 20 adantr K HL W H h T h I B E = Base D
22 eqid D = D
23 1 4 5 2 22 erngfmul K HL W H D = a E , b E a b
24 9 23 eqtr4id K HL W H + ˙ = D
25 24 adantr K HL W H h T h I B + ˙ = D
26 3 1 4 5 7 tendo0cl K HL W H 0 ˙ E
27 26 19 eleqtrrd K HL W H 0 ˙ Base D
28 eqid + D = + D
29 1 4 5 2 28 erngfplus K HL W H + D = a E , b E f T a f b f
30 6 29 eqtr4id K HL W H P = + D
31 30 oveqd K HL W H 0 ˙ P 0 ˙ = 0 ˙ + D 0 ˙
32 3 1 4 5 7 6 tendo0pl K HL W H 0 ˙ E 0 ˙ P 0 ˙ = 0 ˙
33 26 32 mpdan K HL W H 0 ˙ P 0 ˙ = 0 ˙
34 31 33 eqtr3d K HL W H 0 ˙ + D 0 ˙ = 0 ˙
35 1 2 3 4 5 6 7 8 erngdvlem1 K HL W H D Grp
36 eqid 0 D = 0 D
37 18 28 36 isgrpid2 D Grp 0 ˙ Base D 0 ˙ + D 0 ˙ = 0 ˙ 0 D = 0 ˙
38 35 37 syl K HL W H 0 ˙ Base D 0 ˙ + D 0 ˙ = 0 ˙ 0 D = 0 ˙
39 27 34 38 mpbi2and K HL W H 0 D = 0 ˙
40 39 eqcomd K HL W H 0 ˙ = 0 D
41 40 adantr K HL W H h T h I B 0 ˙ = 0 D
42 1 2 3 4 5 6 7 8 9 erngdvlem3 K HL W H D Ring
43 1 4 5 2 42 erng1lem K HL W H 1 D = I T
44 43 eqcomd K HL W H I T = 1 D
45 44 adantr K HL W H h T h I B I T = 1 D
46 42 adantr K HL W H h T h I B D Ring
47 simp1l K HL W H h T h I B s E s 0 ˙ t E t 0 ˙ K HL W H
48 24 oveqd K HL W H s + ˙ t = s D t
49 47 48 syl K HL W H h T h I B s E s 0 ˙ t E t 0 ˙ s + ˙ t = s D t
50 simp2l K HL W H h T h I B s E s 0 ˙ t E t 0 ˙ s E
51 simp3l K HL W H h T h I B s E s 0 ˙ t E t 0 ˙ t E
52 1 4 5 2 22 erngmul K HL W H s E t E s D t = s t
53 47 50 51 52 syl12anc K HL W H h T h I B s E s 0 ˙ t E t 0 ˙ s D t = s t
54 49 53 eqtrd K HL W H h T h I B s E s 0 ˙ t E t 0 ˙ s + ˙ t = s t
55 3 1 4 5 7 tendoconid K HL W H s E s 0 ˙ t E t 0 ˙ s t 0 ˙
56 55 3adant1r K HL W H h T h I B s E s 0 ˙ t E t 0 ˙ s t 0 ˙
57 54 56 eqnetrd K HL W H h T h I B s E s 0 ˙ t E t 0 ˙ s + ˙ t 0 ˙
58 3 1 4 5 7 tendo1ne0 K HL W H I T 0 ˙
59 58 adantr K HL W H h T h I B I T 0 ˙
60 simpll K HL W H h T h I B s E s 0 ˙ K HL W H
61 simplrl K HL W H h T h I B s E s 0 ˙ h T
62 simpr K HL W H h T h I B s E s 0 ˙ s E s 0 ˙
63 3 10 11 1 4 12 13 14 15 16 17 5 7 cdleml6 K HL W H h T s E s 0 ˙ U E U s h = h
64 63 simpld K HL W H h T s E s 0 ˙ U E
65 60 61 62 64 syl3anc K HL W H h T h I B s E s 0 ˙ U E
66 3 10 11 1 4 12 13 14 15 16 17 5 7 cdleml9 K HL W H h T h I B s E s 0 ˙ U 0 ˙
67 66 3expa K HL W H h T h I B s E s 0 ˙ U 0 ˙
68 24 oveqd K HL W H U + ˙ s = U D s
69 68 ad2antrr K HL W H h T h I B s E s 0 ˙ U + ˙ s = U D s
70 simprl K HL W H h T h I B s E s 0 ˙ s E
71 1 4 5 2 22 erngmul K HL W H U E s E U D s = U s
72 60 65 70 71 syl12anc K HL W H h T h I B s E s 0 ˙ U D s = U s
73 3 10 11 1 4 12 13 14 15 16 17 5 7 cdleml8 K HL W H h T h I B s E s 0 ˙ U s = I T
74 73 3expa K HL W H h T h I B s E s 0 ˙ U s = I T
75 69 72 74 3eqtrd K HL W H h T h I B s E s 0 ˙ U + ˙ s = I T
76 21 25 41 45 46 57 59 65 67 75 isdrngd K HL W H h T h I B D DivRing