Step |
Hyp |
Ref |
Expression |
1 |
|
ernggrp.h |
|
2 |
|
ernggrp.d |
|
3 |
|
erngdv.b |
|
4 |
|
erngdv.t |
|
5 |
|
erngdv.e |
|
6 |
|
erngdv.p |
|
7 |
|
erngdv.o |
|
8 |
|
erngdv.i |
|
9 |
|
erngrnglem.m |
|
10 |
|
edlemk6.j |
|
11 |
|
edlemk6.m |
|
12 |
|
edlemk6.r |
|
13 |
|
edlemk6.p |
|
14 |
|
edlemk6.z |
|
15 |
|
edlemk6.y |
|
16 |
|
edlemk6.x |
|
17 |
|
edlemk6.u |
|
18 |
|
eqid |
|
19 |
1 4 5 2 18
|
erngbase |
|
20 |
19
|
eqcomd |
|
21 |
20
|
adantr |
|
22 |
|
eqid |
|
23 |
1 4 5 2 22
|
erngfmul |
|
24 |
9 23
|
eqtr4id |
|
25 |
24
|
adantr |
|
26 |
3 1 4 5 7
|
tendo0cl |
|
27 |
26 19
|
eleqtrrd |
|
28 |
|
eqid |
|
29 |
1 4 5 2 28
|
erngfplus |
|
30 |
6 29
|
eqtr4id |
|
31 |
30
|
oveqd |
|
32 |
3 1 4 5 7 6
|
tendo0pl |
|
33 |
26 32
|
mpdan |
|
34 |
31 33
|
eqtr3d |
|
35 |
1 2 3 4 5 6 7 8
|
erngdvlem1 |
|
36 |
|
eqid |
|
37 |
18 28 36
|
isgrpid2 |
|
38 |
35 37
|
syl |
|
39 |
27 34 38
|
mpbi2and |
|
40 |
39
|
eqcomd |
|
41 |
40
|
adantr |
|
42 |
1 2 3 4 5 6 7 8 9
|
erngdvlem3 |
|
43 |
1 4 5 2 42
|
erng1lem |
|
44 |
43
|
eqcomd |
|
45 |
44
|
adantr |
|
46 |
42
|
adantr |
|
47 |
|
simp1l |
|
48 |
24
|
oveqd |
|
49 |
47 48
|
syl |
|
50 |
|
simp2l |
|
51 |
|
simp3l |
|
52 |
1 4 5 2 22
|
erngmul |
|
53 |
47 50 51 52
|
syl12anc |
|
54 |
49 53
|
eqtrd |
|
55 |
3 1 4 5 7
|
tendoconid |
|
56 |
55
|
3adant1r |
|
57 |
54 56
|
eqnetrd |
|
58 |
3 1 4 5 7
|
tendo1ne0 |
|
59 |
58
|
adantr |
|
60 |
|
simpll |
|
61 |
|
simplrl |
|
62 |
|
simpr |
|
63 |
3 10 11 1 4 12 13 14 15 16 17 5 7
|
cdleml6 |
|
64 |
63
|
simpld |
|
65 |
60 61 62 64
|
syl3anc |
|
66 |
3 10 11 1 4 12 13 14 15 16 17 5 7
|
cdleml9 |
|
67 |
66
|
3expa |
|
68 |
24
|
oveqd |
|
69 |
68
|
ad2antrr |
|
70 |
|
simprl |
|
71 |
1 4 5 2 22
|
erngmul |
|
72 |
60 65 70 71
|
syl12anc |
|
73 |
3 10 11 1 4 12 13 14 15 16 17 5 7
|
cdleml8 |
|
74 |
73
|
3expa |
|
75 |
69 72 74
|
3eqtrd |
|
76 |
21 25 41 45 46 57 59 65 67 75
|
isdrngd |
|