| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ernggrp.h |
|
| 2 |
|
ernggrp.d |
|
| 3 |
|
erngdv.b |
|
| 4 |
|
erngdv.t |
|
| 5 |
|
erngdv.e |
|
| 6 |
|
erngdv.p |
|
| 7 |
|
erngdv.o |
|
| 8 |
|
erngdv.i |
|
| 9 |
|
erngrnglem.m |
|
| 10 |
|
edlemk6.j |
|
| 11 |
|
edlemk6.m |
|
| 12 |
|
edlemk6.r |
|
| 13 |
|
edlemk6.p |
|
| 14 |
|
edlemk6.z |
|
| 15 |
|
edlemk6.y |
|
| 16 |
|
edlemk6.x |
|
| 17 |
|
edlemk6.u |
|
| 18 |
|
eqid |
|
| 19 |
1 4 5 2 18
|
erngbase |
|
| 20 |
19
|
eqcomd |
|
| 21 |
20
|
adantr |
|
| 22 |
|
eqid |
|
| 23 |
1 4 5 2 22
|
erngfmul |
|
| 24 |
9 23
|
eqtr4id |
|
| 25 |
24
|
adantr |
|
| 26 |
3 1 4 5 7
|
tendo0cl |
|
| 27 |
26 19
|
eleqtrrd |
|
| 28 |
|
eqid |
|
| 29 |
1 4 5 2 28
|
erngfplus |
|
| 30 |
6 29
|
eqtr4id |
|
| 31 |
30
|
oveqd |
|
| 32 |
3 1 4 5 7 6
|
tendo0pl |
|
| 33 |
26 32
|
mpdan |
|
| 34 |
31 33
|
eqtr3d |
|
| 35 |
1 2 3 4 5 6 7 8
|
erngdvlem1 |
|
| 36 |
|
eqid |
|
| 37 |
18 28 36
|
isgrpid2 |
|
| 38 |
35 37
|
syl |
|
| 39 |
27 34 38
|
mpbi2and |
|
| 40 |
39
|
eqcomd |
|
| 41 |
40
|
adantr |
|
| 42 |
1 2 3 4 5 6 7 8 9
|
erngdvlem3 |
|
| 43 |
1 4 5 2 42
|
erng1lem |
|
| 44 |
43
|
eqcomd |
|
| 45 |
44
|
adantr |
|
| 46 |
42
|
adantr |
|
| 47 |
|
simp1l |
|
| 48 |
24
|
oveqd |
|
| 49 |
47 48
|
syl |
|
| 50 |
|
simp2l |
|
| 51 |
|
simp3l |
|
| 52 |
1 4 5 2 22
|
erngmul |
|
| 53 |
47 50 51 52
|
syl12anc |
|
| 54 |
49 53
|
eqtrd |
|
| 55 |
3 1 4 5 7
|
tendoconid |
|
| 56 |
55
|
3adant1r |
|
| 57 |
54 56
|
eqnetrd |
|
| 58 |
3 1 4 5 7
|
tendo1ne0 |
|
| 59 |
58
|
adantr |
|
| 60 |
|
simpll |
|
| 61 |
|
simplrl |
|
| 62 |
|
simpr |
|
| 63 |
3 10 11 1 4 12 13 14 15 16 17 5 7
|
cdleml6 |
|
| 64 |
63
|
simpld |
|
| 65 |
60 61 62 64
|
syl3anc |
|
| 66 |
24
|
oveqd |
|
| 67 |
66
|
ad2antrr |
|
| 68 |
|
simprl |
|
| 69 |
1 4 5 2 22
|
erngmul |
|
| 70 |
60 65 68 69
|
syl12anc |
|
| 71 |
3 10 11 1 4 12 13 14 15 16 17 5 7
|
cdleml8 |
|
| 72 |
71
|
3expa |
|
| 73 |
67 70 72
|
3eqtrd |
|
| 74 |
21 25 41 45 46 57 59 65 73
|
isdrngd |
|