Metamath Proof Explorer


Theorem erngmul

Description: Ring addition operation. (Contributed by NM, 10-Jun-2013)

Ref Expression
Hypotheses erngset.h H = LHyp K
erngset.t T = LTrn K W
erngset.e E = TEndo K W
erngset.d D = EDRing K W
erng.m · ˙ = D
Assertion erngmul K X W H U E V E U · ˙ V = U V

Proof

Step Hyp Ref Expression
1 erngset.h H = LHyp K
2 erngset.t T = LTrn K W
3 erngset.e E = TEndo K W
4 erngset.d D = EDRing K W
5 erng.m · ˙ = D
6 1 2 3 4 5 erngfmul K X W H · ˙ = s E , t E s t
7 6 oveqd K X W H U · ˙ V = U s E , t E s t V
8 coexg U E V E U V V
9 coeq1 s = U s t = U t
10 coeq2 t = V U t = U V
11 eqid s E , t E s t = s E , t E s t
12 9 10 11 ovmpog U E V E U V V U s E , t E s t V = U V
13 8 12 mpd3an3 U E V E U s E , t E s t V = U V
14 7 13 sylan9eq K X W H U E V E U · ˙ V = U V