Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
erngmul
Next ⟩
erngfset-rN
Metamath Proof Explorer
Ascii
Unicode
Theorem
erngmul
Description:
Ring addition operation.
(Contributed by
NM
, 10-Jun-2013)
Ref
Expression
Hypotheses
erngset.h
⊢
H
=
LHyp
⁡
K
erngset.t
⊢
T
=
LTrn
⁡
K
⁡
W
erngset.e
⊢
E
=
TEndo
⁡
K
⁡
W
erngset.d
⊢
D
=
EDRing
⁡
K
⁡
W
erng.m
⊢
·
˙
=
⋅
D
Assertion
erngmul
⊢
K
∈
X
∧
W
∈
H
∧
U
∈
E
∧
V
∈
E
→
U
·
˙
V
=
U
∘
V
Proof
Step
Hyp
Ref
Expression
1
erngset.h
⊢
H
=
LHyp
⁡
K
2
erngset.t
⊢
T
=
LTrn
⁡
K
⁡
W
3
erngset.e
⊢
E
=
TEndo
⁡
K
⁡
W
4
erngset.d
⊢
D
=
EDRing
⁡
K
⁡
W
5
erng.m
⊢
·
˙
=
⋅
D
6
1
2
3
4
5
erngfmul
⊢
K
∈
X
∧
W
∈
H
→
·
˙
=
s
∈
E
,
t
∈
E
⟼
s
∘
t
7
6
oveqd
⊢
K
∈
X
∧
W
∈
H
→
U
·
˙
V
=
U
s
∈
E
,
t
∈
E
⟼
s
∘
t
V
8
coexg
⊢
U
∈
E
∧
V
∈
E
→
U
∘
V
∈
V
9
coeq1
⊢
s
=
U
→
s
∘
t
=
U
∘
t
10
coeq2
⊢
t
=
V
→
U
∘
t
=
U
∘
V
11
eqid
⊢
s
∈
E
,
t
∈
E
⟼
s
∘
t
=
s
∈
E
,
t
∈
E
⟼
s
∘
t
12
9
10
11
ovmpog
⊢
U
∈
E
∧
V
∈
E
∧
U
∘
V
∈
V
→
U
s
∈
E
,
t
∈
E
⟼
s
∘
t
V
=
U
∘
V
13
8
12
mpd3an3
⊢
U
∈
E
∧
V
∈
E
→
U
s
∈
E
,
t
∈
E
⟼
s
∘
t
V
=
U
∘
V
14
7
13
sylan9eq
⊢
K
∈
X
∧
W
∈
H
∧
U
∈
E
∧
V
∈
E
→
U
·
˙
V
=
U
∘
V