Step |
Hyp |
Ref |
Expression |
1 |
|
ernggrp.h |
|
2 |
|
ernggrp.d |
|
3 |
|
erngdv.b |
|
4 |
|
erngdv.t |
|
5 |
|
erngdv.e |
|
6 |
|
erngdv.p |
|
7 |
|
erngdv.o |
|
8 |
|
erngdv.i |
|
9 |
|
erngrnglem.m |
|
10 |
|
eqid |
|
11 |
1 4 5 2 10
|
erngbase |
|
12 |
11
|
eqcomd |
|
13 |
|
eqid |
|
14 |
1 4 5 2 13
|
erngfplus |
|
15 |
6 14
|
eqtr4id |
|
16 |
|
eqid |
|
17 |
1 4 5 2 16
|
erngfmul |
|
18 |
9 17
|
eqtr4id |
|
19 |
1 2 3 4 5 6 7 8
|
erngdvlem1 |
|
20 |
18
|
oveqd |
|
21 |
20
|
3ad2ant1 |
|
22 |
1 4 5 2 16
|
erngmul |
|
23 |
22
|
3impb |
|
24 |
21 23
|
eqtrd |
|
25 |
1 5
|
tendococl |
|
26 |
24 25
|
eqeltrd |
|
27 |
|
coass |
|
28 |
18
|
oveqd |
|
29 |
28
|
adantr |
|
30 |
|
simpl |
|
31 |
26
|
3adant3r3 |
|
32 |
|
simpr3 |
|
33 |
1 4 5 2 16
|
erngmul |
|
34 |
30 31 32 33
|
syl12anc |
|
35 |
18
|
oveqdr |
|
36 |
22
|
3adantr3 |
|
37 |
35 36
|
eqtrd |
|
38 |
37
|
coeq1d |
|
39 |
29 34 38
|
3eqtrd |
|
40 |
18
|
oveqd |
|
41 |
40
|
adantr |
|
42 |
|
simpr1 |
|
43 |
18
|
oveqdr |
|
44 |
1 4 5 2 16
|
erngmul |
|
45 |
44
|
3adantr1 |
|
46 |
43 45
|
eqtrd |
|
47 |
1 5
|
tendococl |
|
48 |
47
|
3adant3r1 |
|
49 |
46 48
|
eqeltrd |
|
50 |
1 4 5 2 16
|
erngmul |
|
51 |
30 42 49 50
|
syl12anc |
|
52 |
46
|
coeq2d |
|
53 |
41 51 52
|
3eqtrd |
|
54 |
27 39 53
|
3eqtr4a |
|
55 |
1 4 5 6
|
tendodi1 |
|
56 |
18
|
oveqd |
|
57 |
56
|
adantr |
|
58 |
1 4 5 6
|
tendoplcl |
|
59 |
58
|
3adant3r1 |
|
60 |
1 4 5 2 16
|
erngmul |
|
61 |
30 42 59 60
|
syl12anc |
|
62 |
57 61
|
eqtrd |
|
63 |
18
|
oveqdr |
|
64 |
1 4 5 2 16
|
erngmul |
|
65 |
64
|
3adantr2 |
|
66 |
63 65
|
eqtrd |
|
67 |
37 66
|
oveq12d |
|
68 |
55 62 67
|
3eqtr4d |
|
69 |
1 4 5 6
|
tendodi2 |
|
70 |
18
|
oveqd |
|
71 |
70
|
adantr |
|
72 |
1 4 5 6
|
tendoplcl |
|
73 |
72
|
3adant3r3 |
|
74 |
1 4 5 2 16
|
erngmul |
|
75 |
30 73 32 74
|
syl12anc |
|
76 |
71 75
|
eqtrd |
|
77 |
66 46
|
oveq12d |
|
78 |
69 76 77
|
3eqtr4d |
|
79 |
1 4 5
|
tendoidcl |
|
80 |
18
|
oveqd |
|
81 |
80
|
adantr |
|
82 |
|
simpl |
|
83 |
79
|
adantr |
|
84 |
|
simpr |
|
85 |
1 4 5 2 16
|
erngmul |
|
86 |
82 83 84 85
|
syl12anc |
|
87 |
1 4 5
|
tendo1mul |
|
88 |
81 86 87
|
3eqtrd |
|
89 |
18
|
oveqd |
|
90 |
89
|
adantr |
|
91 |
1 4 5 2 16
|
erngmul |
|
92 |
82 84 83 91
|
syl12anc |
|
93 |
1 4 5
|
tendo1mulr |
|
94 |
90 92 93
|
3eqtrd |
|
95 |
12 15 18 19 26 54 68 78 79 88 94
|
isringd |
|