Metamath Proof Explorer


Theorem erngdvlem3

Description: Lemma for eringring . (Contributed by NM, 6-Aug-2013)

Ref Expression
Hypotheses ernggrp.h H = LHyp K
ernggrp.d D = EDRing K W
erngdv.b B = Base K
erngdv.t T = LTrn K W
erngdv.e E = TEndo K W
erngdv.p P = a E , b E f T a f b f
erngdv.o 0 ˙ = f T I B
erngdv.i I = a E f T a f -1
erngrnglem.m + ˙ = a E , b E a b
Assertion erngdvlem3 K HL W H D Ring

Proof

Step Hyp Ref Expression
1 ernggrp.h H = LHyp K
2 ernggrp.d D = EDRing K W
3 erngdv.b B = Base K
4 erngdv.t T = LTrn K W
5 erngdv.e E = TEndo K W
6 erngdv.p P = a E , b E f T a f b f
7 erngdv.o 0 ˙ = f T I B
8 erngdv.i I = a E f T a f -1
9 erngrnglem.m + ˙ = a E , b E a b
10 eqid Base D = Base D
11 1 4 5 2 10 erngbase K HL W H Base D = E
12 11 eqcomd K HL W H E = Base D
13 eqid + D = + D
14 1 4 5 2 13 erngfplus K HL W H + D = a E , b E f T a f b f
15 6 14 eqtr4id K HL W H P = + D
16 eqid D = D
17 1 4 5 2 16 erngfmul K HL W H D = a E , b E a b
18 9 17 eqtr4id K HL W H + ˙ = D
19 1 2 3 4 5 6 7 8 erngdvlem1 K HL W H D Grp
20 18 oveqd K HL W H s + ˙ t = s D t
21 20 3ad2ant1 K HL W H s E t E s + ˙ t = s D t
22 1 4 5 2 16 erngmul K HL W H s E t E s D t = s t
23 22 3impb K HL W H s E t E s D t = s t
24 21 23 eqtrd K HL W H s E t E s + ˙ t = s t
25 1 5 tendococl K HL W H s E t E s t E
26 24 25 eqeltrd K HL W H s E t E s + ˙ t E
27 coass s t u = s t u
28 18 oveqd K HL W H s + ˙ t + ˙ u = s + ˙ t D u
29 28 adantr K HL W H s E t E u E s + ˙ t + ˙ u = s + ˙ t D u
30 simpl K HL W H s E t E u E K HL W H
31 26 3adant3r3 K HL W H s E t E u E s + ˙ t E
32 simpr3 K HL W H s E t E u E u E
33 1 4 5 2 16 erngmul K HL W H s + ˙ t E u E s + ˙ t D u = s + ˙ t u
34 30 31 32 33 syl12anc K HL W H s E t E u E s + ˙ t D u = s + ˙ t u
35 18 oveqdr K HL W H s E t E u E s + ˙ t = s D t
36 22 3adantr3 K HL W H s E t E u E s D t = s t
37 35 36 eqtrd K HL W H s E t E u E s + ˙ t = s t
38 37 coeq1d K HL W H s E t E u E s + ˙ t u = s t u
39 29 34 38 3eqtrd K HL W H s E t E u E s + ˙ t + ˙ u = s t u
40 18 oveqd K HL W H s + ˙ t + ˙ u = s D t + ˙ u
41 40 adantr K HL W H s E t E u E s + ˙ t + ˙ u = s D t + ˙ u
42 simpr1 K HL W H s E t E u E s E
43 18 oveqdr K HL W H s E t E u E t + ˙ u = t D u
44 1 4 5 2 16 erngmul K HL W H t E u E t D u = t u
45 44 3adantr1 K HL W H s E t E u E t D u = t u
46 43 45 eqtrd K HL W H s E t E u E t + ˙ u = t u
47 1 5 tendococl K HL W H t E u E t u E
48 47 3adant3r1 K HL W H s E t E u E t u E
49 46 48 eqeltrd K HL W H s E t E u E t + ˙ u E
50 1 4 5 2 16 erngmul K HL W H s E t + ˙ u E s D t + ˙ u = s t + ˙ u
51 30 42 49 50 syl12anc K HL W H s E t E u E s D t + ˙ u = s t + ˙ u
52 46 coeq2d K HL W H s E t E u E s t + ˙ u = s t u
53 41 51 52 3eqtrd K HL W H s E t E u E s + ˙ t + ˙ u = s t u
54 27 39 53 3eqtr4a K HL W H s E t E u E s + ˙ t + ˙ u = s + ˙ t + ˙ u
55 1 4 5 6 tendodi1 K HL W H s E t E u E s t P u = s t P s u
56 18 oveqd K HL W H s + ˙ t P u = s D t P u
57 56 adantr K HL W H s E t E u E s + ˙ t P u = s D t P u
58 1 4 5 6 tendoplcl K HL W H t E u E t P u E
59 58 3adant3r1 K HL W H s E t E u E t P u E
60 1 4 5 2 16 erngmul K HL W H s E t P u E s D t P u = s t P u
61 30 42 59 60 syl12anc K HL W H s E t E u E s D t P u = s t P u
62 57 61 eqtrd K HL W H s E t E u E s + ˙ t P u = s t P u
63 18 oveqdr K HL W H s E t E u E s + ˙ u = s D u
64 1 4 5 2 16 erngmul K HL W H s E u E s D u = s u
65 64 3adantr2 K HL W H s E t E u E s D u = s u
66 63 65 eqtrd K HL W H s E t E u E s + ˙ u = s u
67 37 66 oveq12d K HL W H s E t E u E s + ˙ t P s + ˙ u = s t P s u
68 55 62 67 3eqtr4d K HL W H s E t E u E s + ˙ t P u = s + ˙ t P s + ˙ u
69 1 4 5 6 tendodi2 K HL W H s E t E u E s P t u = s u P t u
70 18 oveqd K HL W H s P t + ˙ u = s P t D u
71 70 adantr K HL W H s E t E u E s P t + ˙ u = s P t D u
72 1 4 5 6 tendoplcl K HL W H s E t E s P t E
73 72 3adant3r3 K HL W H s E t E u E s P t E
74 1 4 5 2 16 erngmul K HL W H s P t E u E s P t D u = s P t u
75 30 73 32 74 syl12anc K HL W H s E t E u E s P t D u = s P t u
76 71 75 eqtrd K HL W H s E t E u E s P t + ˙ u = s P t u
77 66 46 oveq12d K HL W H s E t E u E s + ˙ u P t + ˙ u = s u P t u
78 69 76 77 3eqtr4d K HL W H s E t E u E s P t + ˙ u = s + ˙ u P t + ˙ u
79 1 4 5 tendoidcl K HL W H I T E
80 18 oveqd K HL W H I T + ˙ s = I T D s
81 80 adantr K HL W H s E I T + ˙ s = I T D s
82 simpl K HL W H s E K HL W H
83 79 adantr K HL W H s E I T E
84 simpr K HL W H s E s E
85 1 4 5 2 16 erngmul K HL W H I T E s E I T D s = I T s
86 82 83 84 85 syl12anc K HL W H s E I T D s = I T s
87 1 4 5 tendo1mul K HL W H s E I T s = s
88 81 86 87 3eqtrd K HL W H s E I T + ˙ s = s
89 18 oveqd K HL W H s + ˙ I T = s D I T
90 89 adantr K HL W H s E s + ˙ I T = s D I T
91 1 4 5 2 16 erngmul K HL W H s E I T E s D I T = s I T
92 82 84 83 91 syl12anc K HL W H s E s D I T = s I T
93 1 4 5 tendo1mulr K HL W H s E s I T = s
94 90 92 93 3eqtrd K HL W H s E s + ˙ I T = s
95 12 15 18 19 26 54 68 78 79 88 94 isringd K HL W H D Ring