Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
eringring
Next ⟩
erngdv
Metamath Proof Explorer
Ascii
Unicode
Theorem
eringring
Description:
An endomorphism ring is a ring. TODO: fix comment.
(Contributed by
NM
, 4-Aug-2013)
Ref
Expression
Hypotheses
ernggrp.h
⊢
H
=
LHyp
⁡
K
ernggrp.d
⊢
D
=
EDRing
⁡
K
⁡
W
Assertion
eringring
⊢
K
∈
HL
∧
W
∈
H
→
D
∈
Ring
Proof
Step
Hyp
Ref
Expression
1
ernggrp.h
⊢
H
=
LHyp
⁡
K
2
ernggrp.d
⊢
D
=
EDRing
⁡
K
⁡
W
3
eqid
⊢
Base
K
=
Base
K
4
eqid
⊢
LTrn
⁡
K
⁡
W
=
LTrn
⁡
K
⁡
W
5
eqid
⊢
TEndo
⁡
K
⁡
W
=
TEndo
⁡
K
⁡
W
6
eqid
⊢
a
∈
TEndo
⁡
K
⁡
W
,
b
∈
TEndo
⁡
K
⁡
W
⟼
f
∈
LTrn
⁡
K
⁡
W
⟼
a
⁡
f
∘
b
⁡
f
=
a
∈
TEndo
⁡
K
⁡
W
,
b
∈
TEndo
⁡
K
⁡
W
⟼
f
∈
LTrn
⁡
K
⁡
W
⟼
a
⁡
f
∘
b
⁡
f
7
eqid
⊢
f
∈
LTrn
⁡
K
⁡
W
⟼
I
↾
Base
K
=
f
∈
LTrn
⁡
K
⁡
W
⟼
I
↾
Base
K
8
eqid
⊢
a
∈
TEndo
⁡
K
⁡
W
⟼
f
∈
LTrn
⁡
K
⁡
W
⟼
a
⁡
f
-1
=
a
∈
TEndo
⁡
K
⁡
W
⟼
f
∈
LTrn
⁡
K
⁡
W
⟼
a
⁡
f
-1
9
eqid
⊢
a
∈
TEndo
⁡
K
⁡
W
,
b
∈
TEndo
⁡
K
⁡
W
⟼
a
∘
b
=
a
∈
TEndo
⁡
K
⁡
W
,
b
∈
TEndo
⁡
K
⁡
W
⟼
a
∘
b
10
1
2
3
4
5
6
7
8
9
erngdvlem3
⊢
K
∈
HL
∧
W
∈
H
→
D
∈
Ring