Step |
Hyp |
Ref |
Expression |
1 |
|
ernggrp.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
ernggrp.d |
⊢ 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
erngdv.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
4 |
|
erngdv.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
erngdv.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
erngdv.p |
⊢ 𝑃 = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑎 ‘ 𝑓 ) ∘ ( 𝑏 ‘ 𝑓 ) ) ) ) |
7 |
|
erngdv.o |
⊢ 0 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
8 |
|
erngdv.i |
⊢ 𝐼 = ( 𝑎 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ◡ ( 𝑎 ‘ 𝑓 ) ) ) |
9 |
|
erngrnglem.m |
⊢ + = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑎 ∘ 𝑏 ) ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
11 |
1 4 5 2 10
|
erngbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝐷 ) = 𝐸 ) |
12 |
11
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐸 = ( Base ‘ 𝐷 ) ) |
13 |
|
eqid |
⊢ ( +g ‘ 𝐷 ) = ( +g ‘ 𝐷 ) |
14 |
1 4 5 2 13
|
erngfplus |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( +g ‘ 𝐷 ) = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑎 ‘ 𝑓 ) ∘ ( 𝑏 ‘ 𝑓 ) ) ) ) ) |
15 |
6 14
|
eqtr4id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑃 = ( +g ‘ 𝐷 ) ) |
16 |
|
eqid |
⊢ ( .r ‘ 𝐷 ) = ( .r ‘ 𝐷 ) |
17 |
1 4 5 2 16
|
erngfmul |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( .r ‘ 𝐷 ) = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑎 ∘ 𝑏 ) ) ) |
18 |
9 17
|
eqtr4id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → + = ( .r ‘ 𝐷 ) ) |
19 |
1 2 3 4 5 6 7 8
|
erngdvlem1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ Grp ) |
20 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑠 + 𝑡 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑠 + 𝑡 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) ) |
22 |
1 4 5 2 16
|
erngmul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) = ( 𝑠 ∘ 𝑡 ) ) |
23 |
22
|
3impb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) = ( 𝑠 ∘ 𝑡 ) ) |
24 |
21 23
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑠 + 𝑡 ) = ( 𝑠 ∘ 𝑡 ) ) |
25 |
1 5
|
tendococl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑠 ∘ 𝑡 ) ∈ 𝐸 ) |
26 |
24 25
|
eqeltrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑠 + 𝑡 ) ∈ 𝐸 ) |
27 |
|
coass |
⊢ ( ( 𝑠 ∘ 𝑡 ) ∘ 𝑢 ) = ( 𝑠 ∘ ( 𝑡 ∘ 𝑢 ) ) |
28 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝑠 + 𝑡 ) + 𝑢 ) = ( ( 𝑠 + 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 + 𝑡 ) + 𝑢 ) = ( ( 𝑠 + 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) ) |
30 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
31 |
26
|
3adant3r3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 + 𝑡 ) ∈ 𝐸 ) |
32 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → 𝑢 ∈ 𝐸 ) |
33 |
1 4 5 2 16
|
erngmul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑠 + 𝑡 ) ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 + 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( ( 𝑠 + 𝑡 ) ∘ 𝑢 ) ) |
34 |
30 31 32 33
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 + 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( ( 𝑠 + 𝑡 ) ∘ 𝑢 ) ) |
35 |
18
|
oveqdr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 + 𝑡 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) ) |
36 |
22
|
3adantr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑡 ) = ( 𝑠 ∘ 𝑡 ) ) |
37 |
35 36
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 + 𝑡 ) = ( 𝑠 ∘ 𝑡 ) ) |
38 |
37
|
coeq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 + 𝑡 ) ∘ 𝑢 ) = ( ( 𝑠 ∘ 𝑡 ) ∘ 𝑢 ) ) |
39 |
29 34 38
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 + 𝑡 ) + 𝑢 ) = ( ( 𝑠 ∘ 𝑡 ) ∘ 𝑢 ) ) |
40 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑠 + ( 𝑡 + 𝑢 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 + 𝑢 ) ) ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 + ( 𝑡 + 𝑢 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 + 𝑢 ) ) ) |
42 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → 𝑠 ∈ 𝐸 ) |
43 |
18
|
oveqdr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 + 𝑢 ) = ( 𝑡 ( .r ‘ 𝐷 ) 𝑢 ) ) |
44 |
1 4 5 2 16
|
erngmul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑡 ∘ 𝑢 ) ) |
45 |
44
|
3adantr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑡 ∘ 𝑢 ) ) |
46 |
43 45
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 + 𝑢 ) = ( 𝑡 ∘ 𝑢 ) ) |
47 |
1 5
|
tendococl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) → ( 𝑡 ∘ 𝑢 ) ∈ 𝐸 ) |
48 |
47
|
3adant3r1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 ∘ 𝑢 ) ∈ 𝐸 ) |
49 |
46 48
|
eqeltrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 + 𝑢 ) ∈ 𝐸 ) |
50 |
1 4 5 2 16
|
erngmul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ ( 𝑡 + 𝑢 ) ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 + 𝑢 ) ) = ( 𝑠 ∘ ( 𝑡 + 𝑢 ) ) ) |
51 |
30 42 49 50
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 + 𝑢 ) ) = ( 𝑠 ∘ ( 𝑡 + 𝑢 ) ) ) |
52 |
46
|
coeq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 ∘ ( 𝑡 + 𝑢 ) ) = ( 𝑠 ∘ ( 𝑡 ∘ 𝑢 ) ) ) |
53 |
41 51 52
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 + ( 𝑡 + 𝑢 ) ) = ( 𝑠 ∘ ( 𝑡 ∘ 𝑢 ) ) ) |
54 |
27 39 53
|
3eqtr4a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 + 𝑡 ) + 𝑢 ) = ( 𝑠 + ( 𝑡 + 𝑢 ) ) ) |
55 |
1 4 5 6
|
tendodi1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 ∘ ( 𝑡 𝑃 𝑢 ) ) = ( ( 𝑠 ∘ 𝑡 ) 𝑃 ( 𝑠 ∘ 𝑢 ) ) ) |
56 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑠 + ( 𝑡 𝑃 𝑢 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑃 𝑢 ) ) ) |
57 |
56
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 + ( 𝑡 𝑃 𝑢 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑃 𝑢 ) ) ) |
58 |
1 4 5 6
|
tendoplcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) → ( 𝑡 𝑃 𝑢 ) ∈ 𝐸 ) |
59 |
58
|
3adant3r1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑡 𝑃 𝑢 ) ∈ 𝐸 ) |
60 |
1 4 5 2 16
|
erngmul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ ( 𝑡 𝑃 𝑢 ) ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑃 𝑢 ) ) = ( 𝑠 ∘ ( 𝑡 𝑃 𝑢 ) ) ) |
61 |
30 42 59 60
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) ( 𝑡 𝑃 𝑢 ) ) = ( 𝑠 ∘ ( 𝑡 𝑃 𝑢 ) ) ) |
62 |
57 61
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 + ( 𝑡 𝑃 𝑢 ) ) = ( 𝑠 ∘ ( 𝑡 𝑃 𝑢 ) ) ) |
63 |
18
|
oveqdr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 + 𝑢 ) = ( 𝑠 ( .r ‘ 𝐷 ) 𝑢 ) ) |
64 |
1 4 5 2 16
|
erngmul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑠 ∘ 𝑢 ) ) |
65 |
64
|
3adantr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) 𝑢 ) = ( 𝑠 ∘ 𝑢 ) ) |
66 |
63 65
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 + 𝑢 ) = ( 𝑠 ∘ 𝑢 ) ) |
67 |
37 66
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 + 𝑡 ) 𝑃 ( 𝑠 + 𝑢 ) ) = ( ( 𝑠 ∘ 𝑡 ) 𝑃 ( 𝑠 ∘ 𝑢 ) ) ) |
68 |
55 62 67
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 + ( 𝑡 𝑃 𝑢 ) ) = ( ( 𝑠 + 𝑡 ) 𝑃 ( 𝑠 + 𝑢 ) ) ) |
69 |
1 4 5 6
|
tendodi2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑃 𝑡 ) ∘ 𝑢 ) = ( ( 𝑠 ∘ 𝑢 ) 𝑃 ( 𝑡 ∘ 𝑢 ) ) ) |
70 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝑠 𝑃 𝑡 ) + 𝑢 ) = ( ( 𝑠 𝑃 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) ) |
71 |
70
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑃 𝑡 ) + 𝑢 ) = ( ( 𝑠 𝑃 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) ) |
72 |
1 4 5 6
|
tendoplcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑠 𝑃 𝑡 ) ∈ 𝐸 ) |
73 |
72
|
3adant3r3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( 𝑠 𝑃 𝑡 ) ∈ 𝐸 ) |
74 |
1 4 5 2 16
|
erngmul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑠 𝑃 𝑡 ) ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑃 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( ( 𝑠 𝑃 𝑡 ) ∘ 𝑢 ) ) |
75 |
30 73 32 74
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑃 𝑡 ) ( .r ‘ 𝐷 ) 𝑢 ) = ( ( 𝑠 𝑃 𝑡 ) ∘ 𝑢 ) ) |
76 |
71 75
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑃 𝑡 ) + 𝑢 ) = ( ( 𝑠 𝑃 𝑡 ) ∘ 𝑢 ) ) |
77 |
66 46
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 + 𝑢 ) 𝑃 ( 𝑡 + 𝑢 ) ) = ( ( 𝑠 ∘ 𝑢 ) 𝑃 ( 𝑡 ∘ 𝑢 ) ) ) |
78 |
69 76 77
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸 ) ) → ( ( 𝑠 𝑃 𝑡 ) + 𝑢 ) = ( ( 𝑠 + 𝑢 ) 𝑃 ( 𝑡 + 𝑢 ) ) ) |
79 |
1 4 5
|
tendoidcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ∈ 𝐸 ) |
80 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( I ↾ 𝑇 ) + 𝑠 ) = ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑠 ) ) |
81 |
80
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) + 𝑠 ) = ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑠 ) ) |
82 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
83 |
79
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( I ↾ 𝑇 ) ∈ 𝐸 ) |
84 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → 𝑠 ∈ 𝐸 ) |
85 |
1 4 5 2 16
|
erngmul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( I ↾ 𝑇 ) ∈ 𝐸 ∧ 𝑠 ∈ 𝐸 ) ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑠 ) = ( ( I ↾ 𝑇 ) ∘ 𝑠 ) ) |
86 |
82 83 84 85
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) ( .r ‘ 𝐷 ) 𝑠 ) = ( ( I ↾ 𝑇 ) ∘ 𝑠 ) ) |
87 |
1 4 5
|
tendo1mul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) ∘ 𝑠 ) = 𝑠 ) |
88 |
81 86 87
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) + 𝑠 ) = 𝑠 ) |
89 |
18
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑠 + ( I ↾ 𝑇 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) ) |
90 |
89
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝑠 + ( I ↾ 𝑇 ) ) = ( 𝑠 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) ) |
91 |
1 4 5 2 16
|
erngmul |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ ( I ↾ 𝑇 ) ∈ 𝐸 ) ) → ( 𝑠 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( 𝑠 ∘ ( I ↾ 𝑇 ) ) ) |
92 |
82 84 83 91
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝑠 ( .r ‘ 𝐷 ) ( I ↾ 𝑇 ) ) = ( 𝑠 ∘ ( I ↾ 𝑇 ) ) ) |
93 |
1 4 5
|
tendo1mulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝑠 ∘ ( I ↾ 𝑇 ) ) = 𝑠 ) |
94 |
90 92 93
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝑠 + ( I ↾ 𝑇 ) ) = 𝑠 ) |
95 |
12 15 18 19 26 54 68 78 79 88 94
|
isringd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ Ring ) |