Metamath Proof Explorer


Theorem cdleml6

Description: Part of proof of Lemma L of Crawley p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013)

Ref Expression
Hypotheses cdleml6.b B = Base K
cdleml6.j ˙ = join K
cdleml6.m ˙ = meet K
cdleml6.h H = LHyp K
cdleml6.t T = LTrn K W
cdleml6.r R = trL K W
cdleml6.p Q = oc K W
cdleml6.z Z = Q ˙ R b ˙ h Q ˙ R b s h -1
cdleml6.y Y = Q ˙ R g ˙ Z ˙ R g b -1
cdleml6.x X = ι z T | b T b I B R b R s h R b R g z Q = Y
cdleml6.u U = g T if s h = h g X
cdleml6.e E = TEndo K W
cdleml6.o 0 ˙ = f T I B
Assertion cdleml6 K HL W H h T s E s 0 ˙ U E U s h = h

Proof

Step Hyp Ref Expression
1 cdleml6.b B = Base K
2 cdleml6.j ˙ = join K
3 cdleml6.m ˙ = meet K
4 cdleml6.h H = LHyp K
5 cdleml6.t T = LTrn K W
6 cdleml6.r R = trL K W
7 cdleml6.p Q = oc K W
8 cdleml6.z Z = Q ˙ R b ˙ h Q ˙ R b s h -1
9 cdleml6.y Y = Q ˙ R g ˙ Z ˙ R g b -1
10 cdleml6.x X = ι z T | b T b I B R b R s h R b R g z Q = Y
11 cdleml6.u U = g T if s h = h g X
12 cdleml6.e E = TEndo K W
13 cdleml6.o 0 ˙ = f T I B
14 simp1 K HL W H h T s E s 0 ˙ K HL W H
15 simp3l K HL W H h T s E s 0 ˙ s E
16 simp2 K HL W H h T s E s 0 ˙ h T
17 4 5 12 tendocl K HL W H s E h T s h T
18 14 15 16 17 syl3anc K HL W H h T s E s 0 ˙ s h T
19 1 4 5 6 12 13 tendotr K HL W H s E s 0 ˙ h T R s h = R h
20 19 3com23 K HL W H h T s E s 0 ˙ R s h = R h
21 eqid oc K = oc K
22 eqid Atoms K = Atoms K
23 1 2 3 21 22 4 5 6 7 8 9 10 11 12 cdlemk56w K HL W H s h T h T R s h = R h U E U s h = h
24 14 18 16 20 23 syl121anc K HL W H h T s E s 0 ˙ U E U s h = h