Metamath Proof Explorer


Theorem cdlemk56w

Description: Use a fixed element to eliminate P in cdlemk56 . (Contributed by NM, 1-Aug-2013)

Ref Expression
Hypotheses cdlemk6.b B = Base K
cdlemk6.j ˙ = join K
cdlemk6.m ˙ = meet K
cdlemk6.o ˙ = oc K
cdlemk6.a A = Atoms K
cdlemk6.h H = LHyp K
cdlemk6.t T = LTrn K W
cdlemk6.r R = trL K W
cdlemk6.p P = ˙ W
cdlemk6.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk6.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk6.x X = ι z T | b T b I B R b R F R b R g z P = Y
cdlemk6.u U = g T if F = N g X
cdlemk6.e E = TEndo K W
Assertion cdlemk56w K HL W H F T N T R F = R N U E U F = N

Proof

Step Hyp Ref Expression
1 cdlemk6.b B = Base K
2 cdlemk6.j ˙ = join K
3 cdlemk6.m ˙ = meet K
4 cdlemk6.o ˙ = oc K
5 cdlemk6.a A = Atoms K
6 cdlemk6.h H = LHyp K
7 cdlemk6.t T = LTrn K W
8 cdlemk6.r R = trL K W
9 cdlemk6.p P = ˙ W
10 cdlemk6.z Z = P ˙ R b ˙ N P ˙ R b F -1
11 cdlemk6.y Y = P ˙ R g ˙ Z ˙ R g b -1
12 cdlemk6.x X = ι z T | b T b I B R b R F R b R g z P = Y
13 cdlemk6.u U = g T if F = N g X
14 cdlemk6.e E = TEndo K W
15 simp1 K HL W H F T N T R F = R N K HL W H
16 simp2l K HL W H F T N T R F = R N F T
17 simp2r K HL W H F T N T R F = R N N T
18 simp3 K HL W H F T N T R F = R N R F = R N
19 eqid K = K
20 4 fveq1i ˙ W = oc K W
21 9 20 eqtri P = oc K W
22 19 5 6 21 lhpocnel2 K HL W H P A ¬ P K W
23 22 3ad2ant1 K HL W H F T N T R F = R N P A ¬ P K W
24 1 19 2 3 5 6 7 8 10 11 12 13 14 cdlemk56 K HL W H F T N T R F = R N P A ¬ P K W U E
25 15 16 17 18 23 24 syl311anc K HL W H F T N T R F = R N U E
26 1 2 3 4 5 6 7 8 9 10 11 12 13 cdlemk19w K HL W H F T N T R F = R N U F = N
27 25 26 jca K HL W H F T N T R F = R N U E U F = N