Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|
2 |
|
cdlemk5.l |
|
3 |
|
cdlemk5.j |
|
4 |
|
cdlemk5.m |
|
5 |
|
cdlemk5.a |
|
6 |
|
cdlemk5.h |
|
7 |
|
cdlemk5.t |
|
8 |
|
cdlemk5.r |
|
9 |
|
cdlemk5.z |
|
10 |
|
cdlemk5.y |
|
11 |
|
cdlemk5.x |
|
12 |
|
cdlemk5.u |
|
13 |
|
cdlemk5.e |
|
14 |
|
simp11 |
|
15 |
|
vex |
|
16 |
|
riotaex |
|
17 |
11 16
|
eqeltri |
|
18 |
15 17
|
ifex |
|
19 |
18
|
rgenw |
|
20 |
12
|
fnmpt |
|
21 |
19 20
|
mp1i |
|
22 |
|
simpl11 |
|
23 |
|
simpl2 |
|
24 |
|
simpl12 |
|
25 |
|
simpl13 |
|
26 |
|
simpr |
|
27 |
|
simpl3 |
|
28 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdlemk35u |
|
29 |
22 23 24 25 26 27 28
|
syl231anc |
|
30 |
29
|
ralrimiva |
|
31 |
|
ffnfv |
|
32 |
21 30 31
|
sylanbrc |
|
33 |
|
simp11 |
|
34 |
|
simp12 |
|
35 |
|
simp2 |
|
36 |
|
simp3 |
|
37 |
|
simp13 |
|
38 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdlemk55u |
|
39 |
33 34 35 36 37 38
|
syl131anc |
|
40 |
|
simpl1 |
|
41 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdlemk39u |
|
42 |
40 23 26 27 41
|
syl121anc |
|
43 |
2 6 7 8 13 14 32 39 42
|
istendod |
|