| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk5.b |
|
| 2 |
|
cdlemk5.l |
|
| 3 |
|
cdlemk5.j |
|
| 4 |
|
cdlemk5.m |
|
| 5 |
|
cdlemk5.a |
|
| 6 |
|
cdlemk5.h |
|
| 7 |
|
cdlemk5.t |
|
| 8 |
|
cdlemk5.r |
|
| 9 |
|
cdlemk5.z |
|
| 10 |
|
cdlemk5.y |
|
| 11 |
|
cdlemk5.x |
|
| 12 |
|
cdlemk5.u |
|
| 13 |
|
cdlemk5.e |
|
| 14 |
|
simp11 |
|
| 15 |
|
vex |
|
| 16 |
|
riotaex |
|
| 17 |
11 16
|
eqeltri |
|
| 18 |
15 17
|
ifex |
|
| 19 |
18
|
rgenw |
|
| 20 |
12
|
fnmpt |
|
| 21 |
19 20
|
mp1i |
|
| 22 |
|
simpl11 |
|
| 23 |
|
simpl2 |
|
| 24 |
|
simpl12 |
|
| 25 |
|
simpl13 |
|
| 26 |
|
simpr |
|
| 27 |
|
simpl3 |
|
| 28 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdlemk35u |
|
| 29 |
22 23 24 25 26 27 28
|
syl231anc |
|
| 30 |
29
|
ralrimiva |
|
| 31 |
|
ffnfv |
|
| 32 |
21 30 31
|
sylanbrc |
|
| 33 |
|
simp11 |
|
| 34 |
|
simp12 |
|
| 35 |
|
simp2 |
|
| 36 |
|
simp3 |
|
| 37 |
|
simp13 |
|
| 38 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdlemk55u |
|
| 39 |
33 34 35 36 37 38
|
syl131anc |
|
| 40 |
|
simpl1 |
|
| 41 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdlemk39u |
|
| 42 |
40 23 26 27 41
|
syl121anc |
|
| 43 |
2 6 7 8 13 14 32 39 42
|
istendod |
|