Metamath Proof Explorer


Theorem cdlemk39u

Description: Part of proof of Lemma K of Crawley p. 118. Line 31, p. 119. Trace-preserving property of the value of tau, represented by ( UG ) . (Contributed by NM, 31-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
cdlemk5.u U=gTifF=NgX
Assertion cdlemk39u KHLWHFTNTRF=RNGTPA¬P˙WRUG˙RG

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 cdlemk5.u U=gTifF=NgX
13 simpr KHLWHFTNTRF=RNGTPA¬P˙WF=NF=N
14 simpl2r KHLWHFTNTRF=RNGTPA¬P˙WF=NGT
15 11 12 cdlemk40t F=NGTUG=G
16 13 14 15 syl2anc KHLWHFTNTRF=RNGTPA¬P˙WF=NUG=G
17 16 fveq2d KHLWHFTNTRF=RNGTPA¬P˙WF=NRUG=RG
18 simp11l KHLWHFTNTRF=RNGTPA¬P˙WKHL
19 18 hllatd KHLWHFTNTRF=RNGTPA¬P˙WKLat
20 simp11 KHLWHFTNTRF=RNGTPA¬P˙WKHLWH
21 simp2r KHLWHFTNTRF=RNGTPA¬P˙WGT
22 1 6 7 8 trlcl KHLWHGTRGB
23 20 21 22 syl2anc KHLWHFTNTRF=RNGTPA¬P˙WRGB
24 1 2 latref KLatRGBRG˙RG
25 19 23 24 syl2anc KHLWHFTNTRF=RNGTPA¬P˙WRG˙RG
26 25 adantr KHLWHFTNTRF=RNGTPA¬P˙WF=NRG˙RG
27 17 26 eqbrtrd KHLWHFTNTRF=RNGTPA¬P˙WF=NRUG˙RG
28 simpl1 KHLWHFTNTRF=RNGTPA¬P˙WFNKHLWHFTNT
29 simpl2l KHLWHFTNTRF=RNGTPA¬P˙WFNRF=RN
30 simpr KHLWHFTNTRF=RNGTPA¬P˙WFNFN
31 simpl2r KHLWHFTNTRF=RNGTPA¬P˙WFNGT
32 simpl3 KHLWHFTNTRF=RNGTPA¬P˙WFNPA¬P˙W
33 1 2 3 4 5 6 7 8 9 10 11 12 cdlemk39u1 KHLWHFTNTRF=RNFNGTPA¬P˙WRUG˙RG
34 28 29 30 31 32 33 syl131anc KHLWHFTNTRF=RNGTPA¬P˙WFNRUG˙RG
35 27 34 pm2.61dane KHLWHFTNTRF=RNGTPA¬P˙WRUG˙RG