Metamath Proof Explorer


Theorem cdlemk39u1

Description: Lemma for cdlemk39u . (Contributed by NM, 31-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
cdlemk5.u U=gTifF=NgX
Assertion cdlemk39u1 KHLWHFTNTRF=RNFNGTPA¬P˙WRUG˙RG

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 cdlemk5.u U=gTifF=NgX
13 simp22 KHLWHFTNTRF=RNFNGTPA¬P˙WFN
14 simp23 KHLWHFTNTRF=RNFNGTPA¬P˙WGT
15 11 12 cdlemk40f FNGTUG=G/gX
16 13 14 15 syl2anc KHLWHFTNTRF=RNFNGTPA¬P˙WUG=G/gX
17 16 fveq2d KHLWHFTNTRF=RNFNGTPA¬P˙WRUG=RG/gX
18 simp11 KHLWHFTNTRF=RNFNGTPA¬P˙WKHLWH
19 simp12 KHLWHFTNTRF=RNFNGTPA¬P˙WFT
20 simp13 KHLWHFTNTRF=RNFNGTPA¬P˙WNT
21 simp21 KHLWHFTNTRF=RNFNGTPA¬P˙WRF=RN
22 1 6 7 8 trlnid KHLWHFTNTFNRF=RNFIB
23 18 19 20 13 21 22 syl122anc KHLWHFTNTRF=RNFNGTPA¬P˙WFIB
24 19 23 jca KHLWHFTNTRF=RNFNGTPA¬P˙WFTFIB
25 simp3 KHLWHFTNTRF=RNFNGTPA¬P˙WPA¬P˙W
26 1 2 3 4 5 6 7 8 9 10 11 cdlemk39s-id KHLWHFTFIBGTNTPA¬P˙WRF=RNRG/gX˙RG
27 18 24 14 20 25 21 26 syl132anc KHLWHFTNTRF=RNFNGTPA¬P˙WRG/gX˙RG
28 17 27 eqbrtrd KHLWHFTNTRF=RNFNGTPA¬P˙WRUG˙RG