Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk5.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk5.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk5.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk5.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk5.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk5.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk5.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk5.z |
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) |
10 |
|
cdlemk5.y |
|- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) ) |
11 |
|
cdlemk5.x |
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) ) |
12 |
|
cdlemk5.u |
|- U = ( g e. T |-> if ( F = N , g , X ) ) |
13 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F = N ) -> F = N ) |
14 |
|
simpl2r |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F = N ) -> G e. T ) |
15 |
11 12
|
cdlemk40t |
|- ( ( F = N /\ G e. T ) -> ( U ` G ) = G ) |
16 |
13 14 15
|
syl2anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F = N ) -> ( U ` G ) = G ) |
17 |
16
|
fveq2d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F = N ) -> ( R ` ( U ` G ) ) = ( R ` G ) ) |
18 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> K e. HL ) |
19 |
18
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> K e. Lat ) |
20 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
21 |
|
simp2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> G e. T ) |
22 |
1 6 7 8
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` G ) e. B ) |
23 |
20 21 22
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` G ) e. B ) |
24 |
1 2
|
latref |
|- ( ( K e. Lat /\ ( R ` G ) e. B ) -> ( R ` G ) .<_ ( R ` G ) ) |
25 |
19 23 24
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` G ) .<_ ( R ` G ) ) |
26 |
25
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F = N ) -> ( R ` G ) .<_ ( R ` G ) ) |
27 |
17 26
|
eqbrtrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F = N ) -> ( R ` ( U ` G ) ) .<_ ( R ` G ) ) |
28 |
|
simpl1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) ) |
29 |
|
simpl2l |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> ( R ` F ) = ( R ` N ) ) |
30 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> F =/= N ) |
31 |
|
simpl2r |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> G e. T ) |
32 |
|
simpl3 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> ( P e. A /\ -. P .<_ W ) ) |
33 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdlemk39u1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= N /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` ( U ` G ) ) .<_ ( R ` G ) ) |
34 |
28 29 30 31 32 33
|
syl131anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> ( R ` ( U ` G ) ) .<_ ( R ` G ) ) |
35 |
27 34
|
pm2.61dane |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` ( U ` G ) ) .<_ ( R ` G ) ) |