Metamath Proof Explorer


Theorem cdlemk40t

Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013)

Ref Expression
Hypotheses cdlemk40.x
|- X = ( iota_ z e. T ph )
cdlemk40.u
|- U = ( g e. T |-> if ( F = N , g , X ) )
Assertion cdlemk40t
|- ( ( F = N /\ G e. T ) -> ( U ` G ) = G )

Proof

Step Hyp Ref Expression
1 cdlemk40.x
 |-  X = ( iota_ z e. T ph )
2 cdlemk40.u
 |-  U = ( g e. T |-> if ( F = N , g , X ) )
3 1 2 cdlemk40
 |-  ( G e. T -> ( U ` G ) = if ( F = N , G , [_ G / g ]_ X ) )
4 iftrue
 |-  ( F = N -> if ( F = N , G , [_ G / g ]_ X ) = G )
5 3 4 sylan9eqr
 |-  ( ( F = N /\ G e. T ) -> ( U ` G ) = G )