Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk40.x |
|- X = ( iota_ z e. T ph ) |
2 |
|
cdlemk40.u |
|- U = ( g e. T |-> if ( F = N , g , X ) ) |
3 |
|
vex |
|- g e. _V |
4 |
|
riotaex |
|- ( iota_ z e. T ph ) e. _V |
5 |
1 4
|
eqeltri |
|- X e. _V |
6 |
3 5
|
ifex |
|- if ( F = N , g , X ) e. _V |
7 |
6
|
csbex |
|- [_ G / g ]_ if ( F = N , g , X ) e. _V |
8 |
2
|
fvmpts |
|- ( ( G e. T /\ [_ G / g ]_ if ( F = N , g , X ) e. _V ) -> ( U ` G ) = [_ G / g ]_ if ( F = N , g , X ) ) |
9 |
7 8
|
mpan2 |
|- ( G e. T -> ( U ` G ) = [_ G / g ]_ if ( F = N , g , X ) ) |
10 |
|
csbif |
|- [_ G / g ]_ if ( F = N , g , X ) = if ( [. G / g ]. F = N , [_ G / g ]_ g , [_ G / g ]_ X ) |
11 |
|
sbcg |
|- ( G e. T -> ( [. G / g ]. F = N <-> F = N ) ) |
12 |
|
csbvarg |
|- ( G e. T -> [_ G / g ]_ g = G ) |
13 |
11 12
|
ifbieq1d |
|- ( G e. T -> if ( [. G / g ]. F = N , [_ G / g ]_ g , [_ G / g ]_ X ) = if ( F = N , G , [_ G / g ]_ X ) ) |
14 |
10 13
|
syl5eq |
|- ( G e. T -> [_ G / g ]_ if ( F = N , g , X ) = if ( F = N , G , [_ G / g ]_ X ) ) |
15 |
9 14
|
eqtrd |
|- ( G e. T -> ( U ` G ) = if ( F = N , G , [_ G / g ]_ X ) ) |