Metamath Proof Explorer


Theorem cdlemk40

Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013)

Ref Expression
Hypotheses cdlemk40.x 𝑋 = ( 𝑧𝑇 𝜑 )
cdlemk40.u 𝑈 = ( 𝑔𝑇 ↦ if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) )
Assertion cdlemk40 ( 𝐺𝑇 → ( 𝑈𝐺 ) = if ( 𝐹 = 𝑁 , 𝐺 , 𝐺 / 𝑔 𝑋 ) )

Proof

Step Hyp Ref Expression
1 cdlemk40.x 𝑋 = ( 𝑧𝑇 𝜑 )
2 cdlemk40.u 𝑈 = ( 𝑔𝑇 ↦ if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) )
3 vex 𝑔 ∈ V
4 riotaex ( 𝑧𝑇 𝜑 ) ∈ V
5 1 4 eqeltri 𝑋 ∈ V
6 3 5 ifex if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) ∈ V
7 6 csbex 𝐺 / 𝑔 if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) ∈ V
8 2 fvmpts ( ( 𝐺𝑇 𝐺 / 𝑔 if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) ∈ V ) → ( 𝑈𝐺 ) = 𝐺 / 𝑔 if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) )
9 7 8 mpan2 ( 𝐺𝑇 → ( 𝑈𝐺 ) = 𝐺 / 𝑔 if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) )
10 csbif 𝐺 / 𝑔 if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) = if ( [ 𝐺 / 𝑔 ] 𝐹 = 𝑁 , 𝐺 / 𝑔 𝑔 , 𝐺 / 𝑔 𝑋 )
11 sbcg ( 𝐺𝑇 → ( [ 𝐺 / 𝑔 ] 𝐹 = 𝑁𝐹 = 𝑁 ) )
12 csbvarg ( 𝐺𝑇 𝐺 / 𝑔 𝑔 = 𝐺 )
13 11 12 ifbieq1d ( 𝐺𝑇 → if ( [ 𝐺 / 𝑔 ] 𝐹 = 𝑁 , 𝐺 / 𝑔 𝑔 , 𝐺 / 𝑔 𝑋 ) = if ( 𝐹 = 𝑁 , 𝐺 , 𝐺 / 𝑔 𝑋 ) )
14 10 13 syl5eq ( 𝐺𝑇 𝐺 / 𝑔 if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) = if ( 𝐹 = 𝑁 , 𝐺 , 𝐺 / 𝑔 𝑋 ) )
15 9 14 eqtrd ( 𝐺𝑇 → ( 𝑈𝐺 ) = if ( 𝐹 = 𝑁 , 𝐺 , 𝐺 / 𝑔 𝑋 ) )