| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk40.x |
⊢ 𝑋 = ( ℩ 𝑧 ∈ 𝑇 𝜑 ) |
| 2 |
|
cdlemk40.u |
⊢ 𝑈 = ( 𝑔 ∈ 𝑇 ↦ if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) ) |
| 3 |
|
vex |
⊢ 𝑔 ∈ V |
| 4 |
|
riotaex |
⊢ ( ℩ 𝑧 ∈ 𝑇 𝜑 ) ∈ V |
| 5 |
1 4
|
eqeltri |
⊢ 𝑋 ∈ V |
| 6 |
3 5
|
ifex |
⊢ if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) ∈ V |
| 7 |
6
|
csbex |
⊢ ⦋ 𝐺 / 𝑔 ⦌ if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) ∈ V |
| 8 |
2
|
fvmpts |
⊢ ( ( 𝐺 ∈ 𝑇 ∧ ⦋ 𝐺 / 𝑔 ⦌ if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) ∈ V ) → ( 𝑈 ‘ 𝐺 ) = ⦋ 𝐺 / 𝑔 ⦌ if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) ) |
| 9 |
7 8
|
mpan2 |
⊢ ( 𝐺 ∈ 𝑇 → ( 𝑈 ‘ 𝐺 ) = ⦋ 𝐺 / 𝑔 ⦌ if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) ) |
| 10 |
|
csbif |
⊢ ⦋ 𝐺 / 𝑔 ⦌ if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) = if ( [ 𝐺 / 𝑔 ] 𝐹 = 𝑁 , ⦋ 𝐺 / 𝑔 ⦌ 𝑔 , ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) |
| 11 |
|
sbcg |
⊢ ( 𝐺 ∈ 𝑇 → ( [ 𝐺 / 𝑔 ] 𝐹 = 𝑁 ↔ 𝐹 = 𝑁 ) ) |
| 12 |
|
csbvarg |
⊢ ( 𝐺 ∈ 𝑇 → ⦋ 𝐺 / 𝑔 ⦌ 𝑔 = 𝐺 ) |
| 13 |
11 12
|
ifbieq1d |
⊢ ( 𝐺 ∈ 𝑇 → if ( [ 𝐺 / 𝑔 ] 𝐹 = 𝑁 , ⦋ 𝐺 / 𝑔 ⦌ 𝑔 , ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) = if ( 𝐹 = 𝑁 , 𝐺 , ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) ) |
| 14 |
10 13
|
eqtrid |
⊢ ( 𝐺 ∈ 𝑇 → ⦋ 𝐺 / 𝑔 ⦌ if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) = if ( 𝐹 = 𝑁 , 𝐺 , ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) ) |
| 15 |
9 14
|
eqtrd |
⊢ ( 𝐺 ∈ 𝑇 → ( 𝑈 ‘ 𝐺 ) = if ( 𝐹 = 𝑁 , 𝐺 , ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) ) |