Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cdlemk40.x | ⊢ 𝑋 = ( ℩ 𝑧 ∈ 𝑇 𝜑 ) | |
| cdlemk40.u | ⊢ 𝑈 = ( 𝑔 ∈ 𝑇 ↦ if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) ) | ||
| Assertion | cdlemk40t | ⊢ ( ( 𝐹 = 𝑁 ∧ 𝐺 ∈ 𝑇 ) → ( 𝑈 ‘ 𝐺 ) = 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemk40.x | ⊢ 𝑋 = ( ℩ 𝑧 ∈ 𝑇 𝜑 ) | |
| 2 | cdlemk40.u | ⊢ 𝑈 = ( 𝑔 ∈ 𝑇 ↦ if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) ) | |
| 3 | 1 2 | cdlemk40 | ⊢ ( 𝐺 ∈ 𝑇 → ( 𝑈 ‘ 𝐺 ) = if ( 𝐹 = 𝑁 , 𝐺 , ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) ) |
| 4 | iftrue | ⊢ ( 𝐹 = 𝑁 → if ( 𝐹 = 𝑁 , 𝐺 , ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) = 𝐺 ) | |
| 5 | 3 4 | sylan9eqr | ⊢ ( ( 𝐹 = 𝑁 ∧ 𝐺 ∈ 𝑇 ) → ( 𝑈 ‘ 𝐺 ) = 𝐺 ) |