Metamath Proof Explorer


Theorem cdlemk40

Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013)

Ref Expression
Hypotheses cdlemk40.x X = ι z T | φ
cdlemk40.u U = g T if F = N g X
Assertion cdlemk40 G T U G = if F = N G G / g X

Proof

Step Hyp Ref Expression
1 cdlemk40.x X = ι z T | φ
2 cdlemk40.u U = g T if F = N g X
3 vex g V
4 riotaex ι z T | φ V
5 1 4 eqeltri X V
6 3 5 ifex if F = N g X V
7 6 csbex G / g if F = N g X V
8 2 fvmpts G T G / g if F = N g X V U G = G / g if F = N g X
9 7 8 mpan2 G T U G = G / g if F = N g X
10 csbif G / g if F = N g X = if [˙G / g]˙ F = N G / g g G / g X
11 sbcg G T [˙G / g]˙ F = N F = N
12 csbvarg G T G / g g = G
13 11 12 ifbieq1d G T if [˙G / g]˙ F = N G / g g G / g X = if F = N G G / g X
14 10 13 eqtrid G T G / g if F = N g X = if F = N G G / g X
15 9 14 eqtrd G T U G = if F = N G G / g X