| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbeq1 | ⊢ ( 𝑦  =  𝐴  →  ⦋ 𝑦  /  𝑥 ⦌ if ( 𝜑 ,  𝐵 ,  𝐶 )  =  ⦋ 𝐴  /  𝑥 ⦌ if ( 𝜑 ,  𝐵 ,  𝐶 ) ) | 
						
							| 2 |  | dfsbcq2 | ⊢ ( 𝑦  =  𝐴  →  ( [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 3 |  | csbeq1 | ⊢ ( 𝑦  =  𝐴  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) | 
						
							| 4 |  | csbeq1 | ⊢ ( 𝑦  =  𝐴  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) | 
						
							| 5 | 2 3 4 | ifbieq12d | ⊢ ( 𝑦  =  𝐴  →  if ( [ 𝑦  /  𝑥 ] 𝜑 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  =  if ( [ 𝐴  /  𝑥 ] 𝜑 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 6 | 1 5 | eqeq12d | ⊢ ( 𝑦  =  𝐴  →  ( ⦋ 𝑦  /  𝑥 ⦌ if ( 𝜑 ,  𝐵 ,  𝐶 )  =  if ( [ 𝑦  /  𝑥 ] 𝜑 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  ↔  ⦋ 𝐴  /  𝑥 ⦌ if ( 𝜑 ,  𝐵 ,  𝐶 )  =  if ( [ 𝐴  /  𝑥 ] 𝜑 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) ) | 
						
							| 7 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 8 |  | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑦  /  𝑥 ] 𝜑 | 
						
							| 9 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐵 | 
						
							| 10 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐶 | 
						
							| 11 | 8 9 10 | nfif | ⊢ Ⅎ 𝑥 if ( [ 𝑦  /  𝑥 ] 𝜑 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) | 
						
							| 12 |  | sbequ12 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 13 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝐵  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 14 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) | 
						
							| 15 | 12 13 14 | ifbieq12d | ⊢ ( 𝑥  =  𝑦  →  if ( 𝜑 ,  𝐵 ,  𝐶 )  =  if ( [ 𝑦  /  𝑥 ] 𝜑 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 16 | 7 11 15 | csbief | ⊢ ⦋ 𝑦  /  𝑥 ⦌ if ( 𝜑 ,  𝐵 ,  𝐶 )  =  if ( [ 𝑦  /  𝑥 ] 𝜑 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) | 
						
							| 17 | 6 16 | vtoclg | ⊢ ( 𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ if ( 𝜑 ,  𝐵 ,  𝐶 )  =  if ( [ 𝐴  /  𝑥 ] 𝜑 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 18 |  | csbprc | ⊢ ( ¬  𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ if ( 𝜑 ,  𝐵 ,  𝐶 )  =  ∅ ) | 
						
							| 19 |  | csbprc | ⊢ ( ¬  𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  =  ∅ ) | 
						
							| 20 |  | csbprc | ⊢ ( ¬  𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  =  ∅ ) | 
						
							| 21 | 19 20 | ifeq12d | ⊢ ( ¬  𝐴  ∈  V  →  if ( [ 𝐴  /  𝑥 ] 𝜑 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 )  =  if ( [ 𝐴  /  𝑥 ] 𝜑 ,  ∅ ,  ∅ ) ) | 
						
							| 22 |  | ifid | ⊢ if ( [ 𝐴  /  𝑥 ] 𝜑 ,  ∅ ,  ∅ )  =  ∅ | 
						
							| 23 | 21 22 | eqtr2di | ⊢ ( ¬  𝐴  ∈  V  →  ∅  =  if ( [ 𝐴  /  𝑥 ] 𝜑 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 24 | 18 23 | eqtrd | ⊢ ( ¬  𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ if ( 𝜑 ,  𝐵 ,  𝐶 )  =  if ( [ 𝐴  /  𝑥 ] 𝜑 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 25 | 17 24 | pm2.61i | ⊢ ⦋ 𝐴  /  𝑥 ⦌ if ( 𝜑 ,  𝐵 ,  𝐶 )  =  if ( [ 𝐴  /  𝑥 ] 𝜑 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) |