Metamath Proof Explorer


Theorem cdlemk40f

Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013)

Ref Expression
Hypotheses cdlemk40.x
|- X = ( iota_ z e. T ph )
cdlemk40.u
|- U = ( g e. T |-> if ( F = N , g , X ) )
Assertion cdlemk40f
|- ( ( F =/= N /\ G e. T ) -> ( U ` G ) = [_ G / g ]_ X )

Proof

Step Hyp Ref Expression
1 cdlemk40.x
 |-  X = ( iota_ z e. T ph )
2 cdlemk40.u
 |-  U = ( g e. T |-> if ( F = N , g , X ) )
3 1 2 cdlemk40
 |-  ( G e. T -> ( U ` G ) = if ( F = N , G , [_ G / g ]_ X ) )
4 ifnefalse
 |-  ( F =/= N -> if ( F = N , G , [_ G / g ]_ X ) = [_ G / g ]_ X )
5 3 4 sylan9eqr
 |-  ( ( F =/= N /\ G e. T ) -> ( U ` G ) = [_ G / g ]_ X )