Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk41.y |
|- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) ) |
2 |
|
nfcvd |
|- ( G e. T -> F/_ g ( ( P .\/ ( R ` G ) ) ./\ ( Z .\/ ( R ` ( G o. `' b ) ) ) ) ) |
3 |
|
fveq2 |
|- ( g = G -> ( R ` g ) = ( R ` G ) ) |
4 |
3
|
oveq2d |
|- ( g = G -> ( P .\/ ( R ` g ) ) = ( P .\/ ( R ` G ) ) ) |
5 |
|
coeq1 |
|- ( g = G -> ( g o. `' b ) = ( G o. `' b ) ) |
6 |
5
|
fveq2d |
|- ( g = G -> ( R ` ( g o. `' b ) ) = ( R ` ( G o. `' b ) ) ) |
7 |
6
|
oveq2d |
|- ( g = G -> ( Z .\/ ( R ` ( g o. `' b ) ) ) = ( Z .\/ ( R ` ( G o. `' b ) ) ) ) |
8 |
4 7
|
oveq12d |
|- ( g = G -> ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) ) = ( ( P .\/ ( R ` G ) ) ./\ ( Z .\/ ( R ` ( G o. `' b ) ) ) ) ) |
9 |
1 8
|
eqtrid |
|- ( g = G -> Y = ( ( P .\/ ( R ` G ) ) ./\ ( Z .\/ ( R ` ( G o. `' b ) ) ) ) ) |
10 |
2 9
|
csbiegf |
|- ( G e. T -> [_ G / g ]_ Y = ( ( P .\/ ( R ` G ) ) ./\ ( Z .\/ ( R ` ( G o. `' b ) ) ) ) ) |