| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemk41.y | ⊢ 𝑌  =  ( ( 𝑃  ∨  ( 𝑅 ‘ 𝑔 ) )  ∧  ( 𝑍  ∨  ( 𝑅 ‘ ( 𝑔  ∘  ◡ 𝑏 ) ) ) ) | 
						
							| 2 |  | nfcvd | ⊢ ( 𝐺  ∈  𝑇  →  Ⅎ 𝑔 ( ( 𝑃  ∨  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝑍  ∨  ( 𝑅 ‘ ( 𝐺  ∘  ◡ 𝑏 ) ) ) ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑅 ‘ 𝑔 )  =  ( 𝑅 ‘ 𝐺 ) ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑃  ∨  ( 𝑅 ‘ 𝑔 ) )  =  ( 𝑃  ∨  ( 𝑅 ‘ 𝐺 ) ) ) | 
						
							| 5 |  | coeq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔  ∘  ◡ 𝑏 )  =  ( 𝐺  ∘  ◡ 𝑏 ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑅 ‘ ( 𝑔  ∘  ◡ 𝑏 ) )  =  ( 𝑅 ‘ ( 𝐺  ∘  ◡ 𝑏 ) ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑍  ∨  ( 𝑅 ‘ ( 𝑔  ∘  ◡ 𝑏 ) ) )  =  ( 𝑍  ∨  ( 𝑅 ‘ ( 𝐺  ∘  ◡ 𝑏 ) ) ) ) | 
						
							| 8 | 4 7 | oveq12d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑃  ∨  ( 𝑅 ‘ 𝑔 ) )  ∧  ( 𝑍  ∨  ( 𝑅 ‘ ( 𝑔  ∘  ◡ 𝑏 ) ) ) )  =  ( ( 𝑃  ∨  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝑍  ∨  ( 𝑅 ‘ ( 𝐺  ∘  ◡ 𝑏 ) ) ) ) ) | 
						
							| 9 | 1 8 | eqtrid | ⊢ ( 𝑔  =  𝐺  →  𝑌  =  ( ( 𝑃  ∨  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝑍  ∨  ( 𝑅 ‘ ( 𝐺  ∘  ◡ 𝑏 ) ) ) ) ) | 
						
							| 10 | 2 9 | csbiegf | ⊢ ( 𝐺  ∈  𝑇  →  ⦋ 𝐺  /  𝑔 ⦌ 𝑌  =  ( ( 𝑃  ∨  ( 𝑅 ‘ 𝐺 ) )  ∧  ( 𝑍  ∨  ( 𝑅 ‘ ( 𝐺  ∘  ◡ 𝑏 ) ) ) ) ) |