Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk41.y |
⊢ 𝑌 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑔 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝑔 ∘ ◡ 𝑏 ) ) ) ) |
2 |
|
nfcvd |
⊢ ( 𝐺 ∈ 𝑇 → Ⅎ 𝑔 ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝑏 ) ) ) ) ) |
3 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( 𝑅 ‘ 𝑔 ) = ( 𝑅 ‘ 𝐺 ) ) |
4 |
3
|
oveq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑃 ∨ ( 𝑅 ‘ 𝑔 ) ) = ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
5 |
|
coeq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ∘ ◡ 𝑏 ) = ( 𝐺 ∘ ◡ 𝑏 ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑅 ‘ ( 𝑔 ∘ ◡ 𝑏 ) ) = ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝑏 ) ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑍 ∨ ( 𝑅 ‘ ( 𝑔 ∘ ◡ 𝑏 ) ) ) = ( 𝑍 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝑏 ) ) ) ) |
8 |
4 7
|
oveq12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑔 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝑔 ∘ ◡ 𝑏 ) ) ) ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝑏 ) ) ) ) ) |
9 |
1 8
|
syl5eq |
⊢ ( 𝑔 = 𝐺 → 𝑌 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝑏 ) ) ) ) ) |
10 |
2 9
|
csbiegf |
⊢ ( 𝐺 ∈ 𝑇 → ⦋ 𝐺 / 𝑔 ⦌ 𝑌 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝑏 ) ) ) ) ) |