Metamath Proof Explorer


Theorem cdlemk41

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. (Contributed by NM, 19-Jul-2013)

Ref Expression
Hypothesis cdlemk41.y 𝑌 = ( ( 𝑃 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
Assertion cdlemk41 ( 𝐺𝑇 𝐺 / 𝑔 𝑌 = ( ( 𝑃 ( 𝑅𝐺 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk41.y 𝑌 = ( ( 𝑃 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
2 nfcvd ( 𝐺𝑇 𝑔 ( ( 𝑃 ( 𝑅𝐺 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) ) )
3 fveq2 ( 𝑔 = 𝐺 → ( 𝑅𝑔 ) = ( 𝑅𝐺 ) )
4 3 oveq2d ( 𝑔 = 𝐺 → ( 𝑃 ( 𝑅𝑔 ) ) = ( 𝑃 ( 𝑅𝐺 ) ) )
5 coeq1 ( 𝑔 = 𝐺 → ( 𝑔 𝑏 ) = ( 𝐺 𝑏 ) )
6 5 fveq2d ( 𝑔 = 𝐺 → ( 𝑅 ‘ ( 𝑔 𝑏 ) ) = ( 𝑅 ‘ ( 𝐺 𝑏 ) ) )
7 6 oveq2d ( 𝑔 = 𝐺 → ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) = ( 𝑍 ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) )
8 4 7 oveq12d ( 𝑔 = 𝐺 → ( ( 𝑃 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) ) )
9 1 8 syl5eq ( 𝑔 = 𝐺𝑌 = ( ( 𝑃 ( 𝑅𝐺 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) ) )
10 2 9 csbiegf ( 𝐺𝑇 𝐺 / 𝑔 𝑌 = ( ( 𝑃 ( 𝑅𝐺 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) ) )