Metamath Proof Explorer


Theorem cdlemk41

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. (Contributed by NM, 19-Jul-2013)

Ref Expression
Hypothesis cdlemk41.y Y = P ˙ R g ˙ Z ˙ R g b -1
Assertion cdlemk41 G T G / g Y = P ˙ R G ˙ Z ˙ R G b -1

Proof

Step Hyp Ref Expression
1 cdlemk41.y Y = P ˙ R g ˙ Z ˙ R g b -1
2 nfcvd G T _ g P ˙ R G ˙ Z ˙ R G b -1
3 fveq2 g = G R g = R G
4 3 oveq2d g = G P ˙ R g = P ˙ R G
5 coeq1 g = G g b -1 = G b -1
6 5 fveq2d g = G R g b -1 = R G b -1
7 6 oveq2d g = G Z ˙ R g b -1 = Z ˙ R G b -1
8 4 7 oveq12d g = G P ˙ R g ˙ Z ˙ R g b -1 = P ˙ R G ˙ Z ˙ R G b -1
9 1 8 syl5eq g = G Y = P ˙ R G ˙ Z ˙ R G b -1
10 2 9 csbiegf G T G / g Y = P ˙ R G ˙ Z ˙ R G b -1