Metamath Proof Explorer


Theorem cdlemk41

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. (Contributed by NM, 19-Jul-2013)

Ref Expression
Hypothesis cdlemk41.y Y=P˙Rg˙Z˙Rgb-1
Assertion cdlemk41 GTG/gY=P˙RG˙Z˙RGb-1

Proof

Step Hyp Ref Expression
1 cdlemk41.y Y=P˙Rg˙Z˙Rgb-1
2 nfcvd GT_gP˙RG˙Z˙RGb-1
3 fveq2 g=GRg=RG
4 3 oveq2d g=GP˙Rg=P˙RG
5 coeq1 g=Ggb-1=Gb-1
6 5 fveq2d g=GRgb-1=RGb-1
7 6 oveq2d g=GZ˙Rgb-1=Z˙RGb-1
8 4 7 oveq12d g=GP˙Rg˙Z˙Rgb-1=P˙RG˙Z˙RGb-1
9 1 8 eqtrid g=GY=P˙RG˙Z˙RGb-1
10 2 9 csbiegf GTG/gY=P˙RG˙Z˙RGb-1