Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|
2 |
|
cdlemk5.l |
|
3 |
|
cdlemk5.j |
|
4 |
|
cdlemk5.m |
|
5 |
|
cdlemk5.a |
|
6 |
|
cdlemk5.h |
|
7 |
|
cdlemk5.t |
|
8 |
|
cdlemk5.r |
|
9 |
|
simp1 |
|
10 |
|
simp23 |
|
11 |
|
simp3r |
|
12 |
2 3 5 6 7 8
|
trljat3 |
|
13 |
9 10 11 12
|
syl3anc |
|
14 |
|
simp1l |
|
15 |
|
simp21 |
|
16 |
|
simp3rl |
|
17 |
2 5 6 7
|
ltrnat |
|
18 |
9 15 16 17
|
syl3anc |
|
19 |
2 5 6 7
|
ltrnat |
|
20 |
9 10 16 19
|
syl3anc |
|
21 |
3 5
|
hlatjcom |
|
22 |
14 18 20 21
|
syl3anc |
|
23 |
2 3 5 6 7 8
|
trlcoabs2N |
|
24 |
9 15 10 11 23
|
syl121anc |
|
25 |
6 7 8
|
trlcocnv |
|
26 |
9 15 10 25
|
syl3anc |
|
27 |
26
|
oveq2d |
|
28 |
2 3 5 6 7 8
|
trlcoabs2N |
|
29 |
9 10 15 11 28
|
syl121anc |
|
30 |
27 29
|
eqtr3d |
|
31 |
22 24 30
|
3eqtr4d |
|
32 |
13 31
|
oveq12d |
|
33 |
1 6 7 8
|
trlcl |
|
34 |
9 10 33
|
syl2anc |
|
35 |
|
simp1r |
|
36 |
|
simp3l |
|
37 |
5 6 7 8
|
trlcocnvat |
|
38 |
14 35 10 15 36 37
|
syl221anc |
|
39 |
2 5 6 7
|
ltrnel |
|
40 |
9 10 11 39
|
syl3anc |
|
41 |
6 7
|
ltrncnv |
|
42 |
9 15 41
|
syl2anc |
|
43 |
6 7 8
|
trlcnv |
|
44 |
9 15 43
|
syl2anc |
|
45 |
36 44
|
neeqtrrd |
|
46 |
|
simp22 |
|
47 |
1 6 7
|
ltrncnvnid |
|
48 |
9 15 46 47
|
syl3anc |
|
49 |
1 6 7 8
|
trlcone |
|
50 |
9 10 42 45 48 49
|
syl122anc |
|
51 |
|
eqid |
|
52 |
51 5 6 7 8
|
trlator0 |
|
53 |
9 10 52
|
syl2anc |
|
54 |
2 6 7 8
|
trlle |
|
55 |
14 35 10 54
|
syl21anc |
|
56 |
6 7
|
ltrnco |
|
57 |
9 10 42 56
|
syl3anc |
|
58 |
2 6 7 8
|
trlle |
|
59 |
9 57 58
|
syl2anc |
|
60 |
2 3 51 5 6
|
lhp2at0nle |
|
61 |
9 40 50 53 55 38 59 60
|
syl322anc |
|
62 |
1 2 3 4 5
|
2llnma1b |
|
63 |
14 34 20 38 61 62
|
syl131anc |
|
64 |
32 63
|
eqtrd |
|