Metamath Proof Explorer


Theorem cdlemkfid1N

Description: Lemma for cdlemkfid3N . (Contributed by NM, 29-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
Assertion cdlemkfid1N KHLWHFTFIBGTRGRFPA¬P˙WP˙RG˙FP˙RGF-1=GP

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 simp1 KHLWHFTFIBGTRGRFPA¬P˙WKHLWH
10 simp23 KHLWHFTFIBGTRGRFPA¬P˙WGT
11 simp3r KHLWHFTFIBGTRGRFPA¬P˙WPA¬P˙W
12 2 3 5 6 7 8 trljat3 KHLWHGTPA¬P˙WP˙RG=GP˙RG
13 9 10 11 12 syl3anc KHLWHFTFIBGTRGRFPA¬P˙WP˙RG=GP˙RG
14 simp1l KHLWHFTFIBGTRGRFPA¬P˙WKHL
15 simp21 KHLWHFTFIBGTRGRFPA¬P˙WFT
16 simp3rl KHLWHFTFIBGTRGRFPA¬P˙WPA
17 2 5 6 7 ltrnat KHLWHFTPAFPA
18 9 15 16 17 syl3anc KHLWHFTFIBGTRGRFPA¬P˙WFPA
19 2 5 6 7 ltrnat KHLWHGTPAGPA
20 9 10 16 19 syl3anc KHLWHFTFIBGTRGRFPA¬P˙WGPA
21 3 5 hlatjcom KHLFPAGPAFP˙GP=GP˙FP
22 14 18 20 21 syl3anc KHLWHFTFIBGTRGRFPA¬P˙WFP˙GP=GP˙FP
23 2 3 5 6 7 8 trlcoabs2N KHLWHFTGTPA¬P˙WFP˙RGF-1=FP˙GP
24 9 15 10 11 23 syl121anc KHLWHFTFIBGTRGRFPA¬P˙WFP˙RGF-1=FP˙GP
25 6 7 8 trlcocnv KHLWHFTGTRFG-1=RGF-1
26 9 15 10 25 syl3anc KHLWHFTFIBGTRGRFPA¬P˙WRFG-1=RGF-1
27 26 oveq2d KHLWHFTFIBGTRGRFPA¬P˙WGP˙RFG-1=GP˙RGF-1
28 2 3 5 6 7 8 trlcoabs2N KHLWHGTFTPA¬P˙WGP˙RFG-1=GP˙FP
29 9 10 15 11 28 syl121anc KHLWHFTFIBGTRGRFPA¬P˙WGP˙RFG-1=GP˙FP
30 27 29 eqtr3d KHLWHFTFIBGTRGRFPA¬P˙WGP˙RGF-1=GP˙FP
31 22 24 30 3eqtr4d KHLWHFTFIBGTRGRFPA¬P˙WFP˙RGF-1=GP˙RGF-1
32 13 31 oveq12d KHLWHFTFIBGTRGRFPA¬P˙WP˙RG˙FP˙RGF-1=GP˙RG˙GP˙RGF-1
33 1 6 7 8 trlcl KHLWHGTRGB
34 9 10 33 syl2anc KHLWHFTFIBGTRGRFPA¬P˙WRGB
35 simp1r KHLWHFTFIBGTRGRFPA¬P˙WWH
36 simp3l KHLWHFTFIBGTRGRFPA¬P˙WRGRF
37 5 6 7 8 trlcocnvat KHLWHGTFTRGRFRGF-1A
38 14 35 10 15 36 37 syl221anc KHLWHFTFIBGTRGRFPA¬P˙WRGF-1A
39 2 5 6 7 ltrnel KHLWHGTPA¬P˙WGPA¬GP˙W
40 9 10 11 39 syl3anc KHLWHFTFIBGTRGRFPA¬P˙WGPA¬GP˙W
41 6 7 ltrncnv KHLWHFTF-1T
42 9 15 41 syl2anc KHLWHFTFIBGTRGRFPA¬P˙WF-1T
43 6 7 8 trlcnv KHLWHFTRF-1=RF
44 9 15 43 syl2anc KHLWHFTFIBGTRGRFPA¬P˙WRF-1=RF
45 36 44 neeqtrrd KHLWHFTFIBGTRGRFPA¬P˙WRGRF-1
46 simp22 KHLWHFTFIBGTRGRFPA¬P˙WFIB
47 1 6 7 ltrncnvnid KHLWHFTFIBF-1IB
48 9 15 46 47 syl3anc KHLWHFTFIBGTRGRFPA¬P˙WF-1IB
49 1 6 7 8 trlcone KHLWHGTF-1TRGRF-1F-1IBRGRGF-1
50 9 10 42 45 48 49 syl122anc KHLWHFTFIBGTRGRFPA¬P˙WRGRGF-1
51 eqid 0.K=0.K
52 51 5 6 7 8 trlator0 KHLWHGTRGARG=0.K
53 9 10 52 syl2anc KHLWHFTFIBGTRGRFPA¬P˙WRGARG=0.K
54 2 6 7 8 trlle KHLWHGTRG˙W
55 14 35 10 54 syl21anc KHLWHFTFIBGTRGRFPA¬P˙WRG˙W
56 6 7 ltrnco KHLWHGTF-1TGF-1T
57 9 10 42 56 syl3anc KHLWHFTFIBGTRGRFPA¬P˙WGF-1T
58 2 6 7 8 trlle KHLWHGF-1TRGF-1˙W
59 9 57 58 syl2anc KHLWHFTFIBGTRGRFPA¬P˙WRGF-1˙W
60 2 3 51 5 6 lhp2at0nle KHLWHGPA¬GP˙WRGRGF-1RGARG=0.KRG˙WRGF-1ARGF-1˙W¬RGF-1˙GP˙RG
61 9 40 50 53 55 38 59 60 syl322anc KHLWHFTFIBGTRGRFPA¬P˙W¬RGF-1˙GP˙RG
62 1 2 3 4 5 2llnma1b KHLRGBGPARGF-1A¬RGF-1˙GP˙RGGP˙RG˙GP˙RGF-1=GP
63 14 34 20 38 61 62 syl131anc KHLWHFTFIBGTRGRFPA¬P˙WGP˙RG˙GP˙RGF-1=GP
64 32 63 eqtrd KHLWHFTFIBGTRGRFPA¬P˙WP˙RG˙FP˙RGF-1=GP