Metamath Proof Explorer


Theorem cdlemkfid1N

Description: Lemma for cdlemkfid3N . (Contributed by NM, 29-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
Assertion cdlemkfid1N K HL W H F T F I B G T R G R F P A ¬ P ˙ W P ˙ R G ˙ F P ˙ R G F -1 = G P

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 simp1 K HL W H F T F I B G T R G R F P A ¬ P ˙ W K HL W H
10 simp23 K HL W H F T F I B G T R G R F P A ¬ P ˙ W G T
11 simp3r K HL W H F T F I B G T R G R F P A ¬ P ˙ W P A ¬ P ˙ W
12 2 3 5 6 7 8 trljat3 K HL W H G T P A ¬ P ˙ W P ˙ R G = G P ˙ R G
13 9 10 11 12 syl3anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W P ˙ R G = G P ˙ R G
14 simp1l K HL W H F T F I B G T R G R F P A ¬ P ˙ W K HL
15 simp21 K HL W H F T F I B G T R G R F P A ¬ P ˙ W F T
16 simp3rl K HL W H F T F I B G T R G R F P A ¬ P ˙ W P A
17 2 5 6 7 ltrnat K HL W H F T P A F P A
18 9 15 16 17 syl3anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W F P A
19 2 5 6 7 ltrnat K HL W H G T P A G P A
20 9 10 16 19 syl3anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W G P A
21 3 5 hlatjcom K HL F P A G P A F P ˙ G P = G P ˙ F P
22 14 18 20 21 syl3anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W F P ˙ G P = G P ˙ F P
23 2 3 5 6 7 8 trlcoabs2N K HL W H F T G T P A ¬ P ˙ W F P ˙ R G F -1 = F P ˙ G P
24 9 15 10 11 23 syl121anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W F P ˙ R G F -1 = F P ˙ G P
25 6 7 8 trlcocnv K HL W H F T G T R F G -1 = R G F -1
26 9 15 10 25 syl3anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W R F G -1 = R G F -1
27 26 oveq2d K HL W H F T F I B G T R G R F P A ¬ P ˙ W G P ˙ R F G -1 = G P ˙ R G F -1
28 2 3 5 6 7 8 trlcoabs2N K HL W H G T F T P A ¬ P ˙ W G P ˙ R F G -1 = G P ˙ F P
29 9 10 15 11 28 syl121anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W G P ˙ R F G -1 = G P ˙ F P
30 27 29 eqtr3d K HL W H F T F I B G T R G R F P A ¬ P ˙ W G P ˙ R G F -1 = G P ˙ F P
31 22 24 30 3eqtr4d K HL W H F T F I B G T R G R F P A ¬ P ˙ W F P ˙ R G F -1 = G P ˙ R G F -1
32 13 31 oveq12d K HL W H F T F I B G T R G R F P A ¬ P ˙ W P ˙ R G ˙ F P ˙ R G F -1 = G P ˙ R G ˙ G P ˙ R G F -1
33 1 6 7 8 trlcl K HL W H G T R G B
34 9 10 33 syl2anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W R G B
35 simp1r K HL W H F T F I B G T R G R F P A ¬ P ˙ W W H
36 simp3l K HL W H F T F I B G T R G R F P A ¬ P ˙ W R G R F
37 5 6 7 8 trlcocnvat K HL W H G T F T R G R F R G F -1 A
38 14 35 10 15 36 37 syl221anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W R G F -1 A
39 2 5 6 7 ltrnel K HL W H G T P A ¬ P ˙ W G P A ¬ G P ˙ W
40 9 10 11 39 syl3anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W G P A ¬ G P ˙ W
41 6 7 ltrncnv K HL W H F T F -1 T
42 9 15 41 syl2anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W F -1 T
43 6 7 8 trlcnv K HL W H F T R F -1 = R F
44 9 15 43 syl2anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W R F -1 = R F
45 36 44 neeqtrrd K HL W H F T F I B G T R G R F P A ¬ P ˙ W R G R F -1
46 simp22 K HL W H F T F I B G T R G R F P A ¬ P ˙ W F I B
47 1 6 7 ltrncnvnid K HL W H F T F I B F -1 I B
48 9 15 46 47 syl3anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W F -1 I B
49 1 6 7 8 trlcone K HL W H G T F -1 T R G R F -1 F -1 I B R G R G F -1
50 9 10 42 45 48 49 syl122anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W R G R G F -1
51 eqid 0. K = 0. K
52 51 5 6 7 8 trlator0 K HL W H G T R G A R G = 0. K
53 9 10 52 syl2anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W R G A R G = 0. K
54 2 6 7 8 trlle K HL W H G T R G ˙ W
55 14 35 10 54 syl21anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W R G ˙ W
56 6 7 ltrnco K HL W H G T F -1 T G F -1 T
57 9 10 42 56 syl3anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W G F -1 T
58 2 6 7 8 trlle K HL W H G F -1 T R G F -1 ˙ W
59 9 57 58 syl2anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W R G F -1 ˙ W
60 2 3 51 5 6 lhp2at0nle K HL W H G P A ¬ G P ˙ W R G R G F -1 R G A R G = 0. K R G ˙ W R G F -1 A R G F -1 ˙ W ¬ R G F -1 ˙ G P ˙ R G
61 9 40 50 53 55 38 59 60 syl322anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W ¬ R G F -1 ˙ G P ˙ R G
62 1 2 3 4 5 2llnma1b K HL R G B G P A R G F -1 A ¬ R G F -1 ˙ G P ˙ R G G P ˙ R G ˙ G P ˙ R G F -1 = G P
63 14 34 20 38 61 62 syl131anc K HL W H F T F I B G T R G R F P A ¬ P ˙ W G P ˙ R G ˙ G P ˙ R G F -1 = G P
64 32 63 eqtrd K HL W H F T F I B G T R G R F P A ¬ P ˙ W P ˙ R G ˙ F P ˙ R G F -1 = G P