| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk5.b |
|
| 2 |
|
cdlemk5.l |
|
| 3 |
|
cdlemk5.j |
|
| 4 |
|
cdlemk5.m |
|
| 5 |
|
cdlemk5.a |
|
| 6 |
|
cdlemk5.h |
|
| 7 |
|
cdlemk5.t |
|
| 8 |
|
cdlemk5.r |
|
| 9 |
|
cdlemk5.z |
|
| 10 |
9
|
oveq1i |
|
| 11 |
|
simp1l |
|
| 12 |
|
simp1 |
|
| 13 |
|
simp3rl |
|
| 14 |
|
simp3rr |
|
| 15 |
1 5 6 7 8
|
trlnidat |
|
| 16 |
12 13 14 15
|
syl3anc |
|
| 17 |
|
simp3ll |
|
| 18 |
1 3 5
|
hlatjcl |
|
| 19 |
11 17 16 18
|
syl3anc |
|
| 20 |
11
|
hllatd |
|
| 21 |
|
simp22 |
|
| 22 |
1 5
|
atbase |
|
| 23 |
17 22
|
syl |
|
| 24 |
1 6 7
|
ltrncl |
|
| 25 |
12 21 23 24
|
syl3anc |
|
| 26 |
|
simp21 |
|
| 27 |
6 7
|
ltrncnv |
|
| 28 |
12 26 27
|
syl2anc |
|
| 29 |
6 7
|
ltrnco |
|
| 30 |
12 13 28 29
|
syl3anc |
|
| 31 |
1 6 7 8
|
trlcl |
|
| 32 |
12 30 31
|
syl2anc |
|
| 33 |
1 3
|
latjcl |
|
| 34 |
20 25 32 33
|
syl3anc |
|
| 35 |
2 3 5
|
hlatlej2 |
|
| 36 |
11 17 16 35
|
syl3anc |
|
| 37 |
1 2 3 4 5
|
atmod2i1 |
|
| 38 |
11 16 19 34 36 37
|
syl131anc |
|
| 39 |
1 5
|
atbase |
|
| 40 |
16 39
|
syl |
|
| 41 |
1 6 7 8
|
trlcl |
|
| 42 |
12 21 41
|
syl2anc |
|
| 43 |
1 3
|
latj32 |
|
| 44 |
20 23 40 42 43
|
syl13anc |
|
| 45 |
|
simp3l |
|
| 46 |
2 3 5 6 7 8
|
trljat3 |
|
| 47 |
12 21 45 46
|
syl3anc |
|
| 48 |
47
|
oveq1d |
|
| 49 |
1 3
|
latjass |
|
| 50 |
20 25 42 40 49
|
syl13anc |
|
| 51 |
44 48 50
|
3eqtrd |
|
| 52 |
1 3
|
latjass |
|
| 53 |
20 25 32 40 52
|
syl13anc |
|
| 54 |
1 3
|
latjcom |
|
| 55 |
20 42 40 54
|
syl3anc |
|
| 56 |
6 7 8
|
trlcnv |
|
| 57 |
12 26 56
|
syl2anc |
|
| 58 |
|
simp23 |
|
| 59 |
57 58
|
eqtrd |
|
| 60 |
59
|
oveq2d |
|
| 61 |
55 60
|
eqtr4d |
|
| 62 |
3 6 7 8
|
trljco |
|
| 63 |
12 13 28 62
|
syl3anc |
|
| 64 |
1 3
|
latjcom |
|
| 65 |
20 40 32 64
|
syl3anc |
|
| 66 |
61 63 65
|
3eqtr2d |
|
| 67 |
66
|
oveq2d |
|
| 68 |
53 67
|
eqtr4d |
|
| 69 |
51 68
|
eqtr4d |
|
| 70 |
69
|
oveq2d |
|
| 71 |
1 3 4
|
latabs2 |
|
| 72 |
20 19 42 71
|
syl3anc |
|
| 73 |
38 70 72
|
3eqtr2d |
|
| 74 |
10 73
|
eqtrid |
|