Metamath Proof Explorer


Theorem cdlemkid1

Description: Lemma for cdlemkid . (Contributed by NM, 24-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
Assertion cdlemkid1 K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B Z ˙ R b = P ˙ R b

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 9 oveq1i Z ˙ R b = P ˙ R b ˙ N P ˙ R b F -1 ˙ R b
11 simp1l K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B K HL
12 simp1 K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B K HL W H
13 simp3rl K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B b T
14 simp3rr K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B b I B
15 1 5 6 7 8 trlnidat K HL W H b T b I B R b A
16 12 13 14 15 syl3anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B R b A
17 simp3ll K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B P A
18 1 3 5 hlatjcl K HL P A R b A P ˙ R b B
19 11 17 16 18 syl3anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B P ˙ R b B
20 11 hllatd K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B K Lat
21 simp22 K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B N T
22 1 5 atbase P A P B
23 17 22 syl K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B P B
24 1 6 7 ltrncl K HL W H N T P B N P B
25 12 21 23 24 syl3anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B N P B
26 simp21 K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B F T
27 6 7 ltrncnv K HL W H F T F -1 T
28 12 26 27 syl2anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B F -1 T
29 6 7 ltrnco K HL W H b T F -1 T b F -1 T
30 12 13 28 29 syl3anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B b F -1 T
31 1 6 7 8 trlcl K HL W H b F -1 T R b F -1 B
32 12 30 31 syl2anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B R b F -1 B
33 1 3 latjcl K Lat N P B R b F -1 B N P ˙ R b F -1 B
34 20 25 32 33 syl3anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B N P ˙ R b F -1 B
35 2 3 5 hlatlej2 K HL P A R b A R b ˙ P ˙ R b
36 11 17 16 35 syl3anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B R b ˙ P ˙ R b
37 1 2 3 4 5 atmod2i1 K HL R b A P ˙ R b B N P ˙ R b F -1 B R b ˙ P ˙ R b P ˙ R b ˙ N P ˙ R b F -1 ˙ R b = P ˙ R b ˙ N P ˙ R b F -1 ˙ R b
38 11 16 19 34 36 37 syl131anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B P ˙ R b ˙ N P ˙ R b F -1 ˙ R b = P ˙ R b ˙ N P ˙ R b F -1 ˙ R b
39 1 5 atbase R b A R b B
40 16 39 syl K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B R b B
41 1 6 7 8 trlcl K HL W H N T R N B
42 12 21 41 syl2anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B R N B
43 1 3 latj32 K Lat P B R b B R N B P ˙ R b ˙ R N = P ˙ R N ˙ R b
44 20 23 40 42 43 syl13anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B P ˙ R b ˙ R N = P ˙ R N ˙ R b
45 simp3l K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B P A ¬ P ˙ W
46 2 3 5 6 7 8 trljat3 K HL W H N T P A ¬ P ˙ W P ˙ R N = N P ˙ R N
47 12 21 45 46 syl3anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B P ˙ R N = N P ˙ R N
48 47 oveq1d K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B P ˙ R N ˙ R b = N P ˙ R N ˙ R b
49 1 3 latjass K Lat N P B R N B R b B N P ˙ R N ˙ R b = N P ˙ R N ˙ R b
50 20 25 42 40 49 syl13anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B N P ˙ R N ˙ R b = N P ˙ R N ˙ R b
51 44 48 50 3eqtrd K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B P ˙ R b ˙ R N = N P ˙ R N ˙ R b
52 1 3 latjass K Lat N P B R b F -1 B R b B N P ˙ R b F -1 ˙ R b = N P ˙ R b F -1 ˙ R b
53 20 25 32 40 52 syl13anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B N P ˙ R b F -1 ˙ R b = N P ˙ R b F -1 ˙ R b
54 1 3 latjcom K Lat R N B R b B R N ˙ R b = R b ˙ R N
55 20 42 40 54 syl3anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B R N ˙ R b = R b ˙ R N
56 6 7 8 trlcnv K HL W H F T R F -1 = R F
57 12 26 56 syl2anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B R F -1 = R F
58 simp23 K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B R F = R N
59 57 58 eqtrd K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B R F -1 = R N
60 59 oveq2d K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B R b ˙ R F -1 = R b ˙ R N
61 55 60 eqtr4d K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B R N ˙ R b = R b ˙ R F -1
62 3 6 7 8 trljco K HL W H b T F -1 T R b ˙ R b F -1 = R b ˙ R F -1
63 12 13 28 62 syl3anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B R b ˙ R b F -1 = R b ˙ R F -1
64 1 3 latjcom K Lat R b B R b F -1 B R b ˙ R b F -1 = R b F -1 ˙ R b
65 20 40 32 64 syl3anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B R b ˙ R b F -1 = R b F -1 ˙ R b
66 61 63 65 3eqtr2d K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B R N ˙ R b = R b F -1 ˙ R b
67 66 oveq2d K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B N P ˙ R N ˙ R b = N P ˙ R b F -1 ˙ R b
68 53 67 eqtr4d K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B N P ˙ R b F -1 ˙ R b = N P ˙ R N ˙ R b
69 51 68 eqtr4d K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B P ˙ R b ˙ R N = N P ˙ R b F -1 ˙ R b
70 69 oveq2d K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B P ˙ R b ˙ P ˙ R b ˙ R N = P ˙ R b ˙ N P ˙ R b F -1 ˙ R b
71 1 3 4 latabs2 K Lat P ˙ R b B R N B P ˙ R b ˙ P ˙ R b ˙ R N = P ˙ R b
72 20 19 42 71 syl3anc K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B P ˙ R b ˙ P ˙ R b ˙ R N = P ˙ R b
73 38 70 72 3eqtr2d K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B P ˙ R b ˙ N P ˙ R b F -1 ˙ R b = P ˙ R b
74 10 73 eqtrid K HL W H F T N T R F = R N P A ¬ P ˙ W b T b I B Z ˙ R b = P ˙ R b