Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|
2 |
|
cdlemk5.l |
|
3 |
|
cdlemk5.j |
|
4 |
|
cdlemk5.m |
|
5 |
|
cdlemk5.a |
|
6 |
|
cdlemk5.h |
|
7 |
|
cdlemk5.t |
|
8 |
|
cdlemk5.r |
|
9 |
|
cdlemk5.z |
|
10 |
9
|
oveq1i |
|
11 |
|
simp1l |
|
12 |
|
simp1 |
|
13 |
|
simp3rl |
|
14 |
|
simp3rr |
|
15 |
1 5 6 7 8
|
trlnidat |
|
16 |
12 13 14 15
|
syl3anc |
|
17 |
|
simp3ll |
|
18 |
1 3 5
|
hlatjcl |
|
19 |
11 17 16 18
|
syl3anc |
|
20 |
11
|
hllatd |
|
21 |
|
simp22 |
|
22 |
1 5
|
atbase |
|
23 |
17 22
|
syl |
|
24 |
1 6 7
|
ltrncl |
|
25 |
12 21 23 24
|
syl3anc |
|
26 |
|
simp21 |
|
27 |
6 7
|
ltrncnv |
|
28 |
12 26 27
|
syl2anc |
|
29 |
6 7
|
ltrnco |
|
30 |
12 13 28 29
|
syl3anc |
|
31 |
1 6 7 8
|
trlcl |
|
32 |
12 30 31
|
syl2anc |
|
33 |
1 3
|
latjcl |
|
34 |
20 25 32 33
|
syl3anc |
|
35 |
2 3 5
|
hlatlej2 |
|
36 |
11 17 16 35
|
syl3anc |
|
37 |
1 2 3 4 5
|
atmod2i1 |
|
38 |
11 16 19 34 36 37
|
syl131anc |
|
39 |
1 5
|
atbase |
|
40 |
16 39
|
syl |
|
41 |
1 6 7 8
|
trlcl |
|
42 |
12 21 41
|
syl2anc |
|
43 |
1 3
|
latj32 |
|
44 |
20 23 40 42 43
|
syl13anc |
|
45 |
|
simp3l |
|
46 |
2 3 5 6 7 8
|
trljat3 |
|
47 |
12 21 45 46
|
syl3anc |
|
48 |
47
|
oveq1d |
|
49 |
1 3
|
latjass |
|
50 |
20 25 42 40 49
|
syl13anc |
|
51 |
44 48 50
|
3eqtrd |
|
52 |
1 3
|
latjass |
|
53 |
20 25 32 40 52
|
syl13anc |
|
54 |
1 3
|
latjcom |
|
55 |
20 42 40 54
|
syl3anc |
|
56 |
6 7 8
|
trlcnv |
|
57 |
12 26 56
|
syl2anc |
|
58 |
|
simp23 |
|
59 |
57 58
|
eqtrd |
|
60 |
59
|
oveq2d |
|
61 |
55 60
|
eqtr4d |
|
62 |
3 6 7 8
|
trljco |
|
63 |
12 13 28 62
|
syl3anc |
|
64 |
1 3
|
latjcom |
|
65 |
20 40 32 64
|
syl3anc |
|
66 |
61 63 65
|
3eqtr2d |
|
67 |
66
|
oveq2d |
|
68 |
53 67
|
eqtr4d |
|
69 |
51 68
|
eqtr4d |
|
70 |
69
|
oveq2d |
|
71 |
1 3 4
|
latabs2 |
|
72 |
20 19 42 71
|
syl3anc |
|
73 |
38 70 72
|
3eqtr2d |
|
74 |
10 73
|
eqtrid |
|