Metamath Proof Explorer


Theorem cdlemkfid2N

Description: Lemma for cdlemkfid3N . (Contributed by NM, 29-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
Assertion cdlemkfid2N KHLWHF=NFTFIBbTRbRFPA¬P˙WZ=bP

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 simp1r KHLWHF=NFTFIBbTRbRFPA¬P˙WF=N
11 10 fveq1d KHLWHF=NFTFIBbTRbRFPA¬P˙WFP=NP
12 11 oveq1d KHLWHF=NFTFIBbTRbRFPA¬P˙WFP˙RbF-1=NP˙RbF-1
13 12 oveq2d KHLWHF=NFTFIBbTRbRFPA¬P˙WP˙Rb˙FP˙RbF-1=P˙Rb˙NP˙RbF-1
14 1 2 3 4 5 6 7 8 cdlemkfid1N KHLWHFTFIBbTRbRFPA¬P˙WP˙Rb˙FP˙RbF-1=bP
15 14 3adant1r KHLWHF=NFTFIBbTRbRFPA¬P˙WP˙Rb˙FP˙RbF-1=bP
16 13 15 eqtr3d KHLWHF=NFTFIBbTRbRFPA¬P˙WP˙Rb˙NP˙RbF-1=bP
17 9 16 eqtrid KHLWHF=NFTFIBbTRbRFPA¬P˙WZ=bP