Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|
2 |
|
cdlemk5.l |
|
3 |
|
cdlemk5.j |
|
4 |
|
cdlemk5.m |
|
5 |
|
cdlemk5.a |
|
6 |
|
cdlemk5.h |
|
7 |
|
cdlemk5.t |
|
8 |
|
cdlemk5.r |
|
9 |
|
cdlemk5.z |
|
10 |
|
cdlemk5.y |
|
11 |
|
simp32 |
|
12 |
11
|
csbeq1d |
|
13 |
1 6 7
|
idltrn |
|
14 |
13
|
3ad2ant1 |
|
15 |
10
|
cdlemk41 |
|
16 |
14 15
|
syl |
|
17 |
|
eqid |
|
18 |
1 17 6 8
|
trlid0 |
|
19 |
18
|
3ad2ant1 |
|
20 |
19
|
oveq2d |
|
21 |
|
simp1l |
|
22 |
|
hlol |
|
23 |
21 22
|
syl |
|
24 |
|
simp31l |
|
25 |
1 5
|
atbase |
|
26 |
24 25
|
syl |
|
27 |
1 3 17
|
olj01 |
|
28 |
23 26 27
|
syl2anc |
|
29 |
20 28
|
eqtrd |
|
30 |
|
simp1 |
|
31 |
|
simp33l |
|
32 |
6 7
|
ltrncnv |
|
33 |
30 31 32
|
syl2anc |
|
34 |
1 6 7
|
ltrn1o |
|
35 |
30 33 34
|
syl2anc |
|
36 |
|
f1of |
|
37 |
|
fcoi2 |
|
38 |
35 36 37
|
3syl |
|
39 |
38
|
fveq2d |
|
40 |
6 7 8
|
trlcnv |
|
41 |
30 31 40
|
syl2anc |
|
42 |
39 41
|
eqtrd |
|
43 |
42
|
oveq2d |
|
44 |
|
simp31 |
|
45 |
|
simp33 |
|
46 |
44 45
|
jca |
|
47 |
1 2 3 4 5 6 7 8 9
|
cdlemkid1 |
|
48 |
46 47
|
syld3an3 |
|
49 |
43 48
|
eqtrd |
|
50 |
29 49
|
oveq12d |
|
51 |
21
|
hllatd |
|
52 |
1 6 7 8
|
trlcl |
|
53 |
30 31 52
|
syl2anc |
|
54 |
1 3 4
|
latabs2 |
|
55 |
51 26 53 54
|
syl3anc |
|
56 |
50 55
|
eqtrd |
|
57 |
16 56
|
eqtrd |
|
58 |
12 57
|
eqtrd |
|