| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk5.b |
|
| 2 |
|
cdlemk5.l |
|
| 3 |
|
cdlemk5.j |
|
| 4 |
|
cdlemk5.m |
|
| 5 |
|
cdlemk5.a |
|
| 6 |
|
cdlemk5.h |
|
| 7 |
|
cdlemk5.t |
|
| 8 |
|
cdlemk5.r |
|
| 9 |
|
cdlemk5.z |
|
| 10 |
|
cdlemk5.y |
|
| 11 |
|
simp32 |
|
| 12 |
11
|
csbeq1d |
|
| 13 |
1 6 7
|
idltrn |
|
| 14 |
13
|
3ad2ant1 |
|
| 15 |
10
|
cdlemk41 |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
eqid |
|
| 18 |
1 17 6 8
|
trlid0 |
|
| 19 |
18
|
3ad2ant1 |
|
| 20 |
19
|
oveq2d |
|
| 21 |
|
simp1l |
|
| 22 |
|
hlol |
|
| 23 |
21 22
|
syl |
|
| 24 |
|
simp31l |
|
| 25 |
1 5
|
atbase |
|
| 26 |
24 25
|
syl |
|
| 27 |
1 3 17
|
olj01 |
|
| 28 |
23 26 27
|
syl2anc |
|
| 29 |
20 28
|
eqtrd |
|
| 30 |
|
simp1 |
|
| 31 |
|
simp33l |
|
| 32 |
6 7
|
ltrncnv |
|
| 33 |
30 31 32
|
syl2anc |
|
| 34 |
1 6 7
|
ltrn1o |
|
| 35 |
30 33 34
|
syl2anc |
|
| 36 |
|
f1of |
|
| 37 |
|
fcoi2 |
|
| 38 |
35 36 37
|
3syl |
|
| 39 |
38
|
fveq2d |
|
| 40 |
6 7 8
|
trlcnv |
|
| 41 |
30 31 40
|
syl2anc |
|
| 42 |
39 41
|
eqtrd |
|
| 43 |
42
|
oveq2d |
|
| 44 |
|
simp31 |
|
| 45 |
|
simp33 |
|
| 46 |
44 45
|
jca |
|
| 47 |
1 2 3 4 5 6 7 8 9
|
cdlemkid1 |
|
| 48 |
46 47
|
syld3an3 |
|
| 49 |
43 48
|
eqtrd |
|
| 50 |
29 49
|
oveq12d |
|
| 51 |
21
|
hllatd |
|
| 52 |
1 6 7 8
|
trlcl |
|
| 53 |
30 31 52
|
syl2anc |
|
| 54 |
1 3 4
|
latabs2 |
|
| 55 |
51 26 53 54
|
syl3anc |
|
| 56 |
50 55
|
eqtrd |
|
| 57 |
16 56
|
eqtrd |
|
| 58 |
12 57
|
eqtrd |
|