Metamath Proof Explorer


Theorem cdlemkid2

Description: Lemma for cdlemkid . (Contributed by NM, 24-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
Assertion cdlemkid2 KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBG/gY=P

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 simp32 KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBG=IB
12 11 csbeq1d KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBG/gY=IB/gY
13 1 6 7 idltrn KHLWHIBT
14 13 3ad2ant1 KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBIBT
15 10 cdlemk41 IBTIB/gY=P˙RIB˙Z˙RIBb-1
16 14 15 syl KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBIB/gY=P˙RIB˙Z˙RIBb-1
17 eqid 0.K=0.K
18 1 17 6 8 trlid0 KHLWHRIB=0.K
19 18 3ad2ant1 KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRIB=0.K
20 19 oveq2d KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBP˙RIB=P˙0.K
21 simp1l KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBKHL
22 hlol KHLKOL
23 21 22 syl KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBKOL
24 simp31l KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBPA
25 1 5 atbase PAPB
26 24 25 syl KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBPB
27 1 3 17 olj01 KOLPBP˙0.K=P
28 23 26 27 syl2anc KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBP˙0.K=P
29 20 28 eqtrd KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBP˙RIB=P
30 simp1 KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBKHLWH
31 simp33l KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBbT
32 6 7 ltrncnv KHLWHbTb-1T
33 30 31 32 syl2anc KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBb-1T
34 1 6 7 ltrn1o KHLWHb-1Tb-1:B1-1 ontoB
35 30 33 34 syl2anc KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBb-1:B1-1 ontoB
36 f1of b-1:B1-1 ontoBb-1:BB
37 fcoi2 b-1:BBIBb-1=b-1
38 35 36 37 3syl KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBIBb-1=b-1
39 38 fveq2d KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRIBb-1=Rb-1
40 6 7 8 trlcnv KHLWHbTRb-1=Rb
41 30 31 40 syl2anc KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRb-1=Rb
42 39 41 eqtrd KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRIBb-1=Rb
43 42 oveq2d KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBZ˙RIBb-1=Z˙Rb
44 simp31 KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBPA¬P˙W
45 simp33 KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBbTbIB
46 44 45 jca KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBPA¬P˙WbTbIB
47 1 2 3 4 5 6 7 8 9 cdlemkid1 KHLWHFTNTRF=RNPA¬P˙WbTbIBZ˙Rb=P˙Rb
48 46 47 syld3an3 KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBZ˙Rb=P˙Rb
49 43 48 eqtrd KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBZ˙RIBb-1=P˙Rb
50 29 49 oveq12d KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBP˙RIB˙Z˙RIBb-1=P˙P˙Rb
51 21 hllatd KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBKLat
52 1 6 7 8 trlcl KHLWHbTRbB
53 30 31 52 syl2anc KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRbB
54 1 3 4 latabs2 KLatPBRbBP˙P˙Rb=P
55 51 26 53 54 syl3anc KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBP˙P˙Rb=P
56 50 55 eqtrd KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBP˙RIB˙Z˙RIBb-1=P
57 16 56 eqtrd KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBIB/gY=P
58 12 57 eqtrd KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBG/gY=P