Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk5.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk5.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk5.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk5.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk5.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk5.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk5.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk5.z |
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) |
10 |
|
cdlemk5.y |
|- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) ) |
11 |
|
simp32 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> G = ( _I |` B ) ) |
12 |
11
|
csbeq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> [_ G / g ]_ Y = [_ ( _I |` B ) / g ]_ Y ) |
13 |
1 6 7
|
idltrn |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. T ) |
14 |
13
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( _I |` B ) e. T ) |
15 |
10
|
cdlemk41 |
|- ( ( _I |` B ) e. T -> [_ ( _I |` B ) / g ]_ Y = ( ( P .\/ ( R ` ( _I |` B ) ) ) ./\ ( Z .\/ ( R ` ( ( _I |` B ) o. `' b ) ) ) ) ) |
16 |
14 15
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> [_ ( _I |` B ) / g ]_ Y = ( ( P .\/ ( R ` ( _I |` B ) ) ) ./\ ( Z .\/ ( R ` ( ( _I |` B ) o. `' b ) ) ) ) ) |
17 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
18 |
1 17 6 8
|
trlid0 |
|- ( ( K e. HL /\ W e. H ) -> ( R ` ( _I |` B ) ) = ( 0. ` K ) ) |
19 |
18
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( R ` ( _I |` B ) ) = ( 0. ` K ) ) |
20 |
19
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( P .\/ ( R ` ( _I |` B ) ) ) = ( P .\/ ( 0. ` K ) ) ) |
21 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> K e. HL ) |
22 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
23 |
21 22
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> K e. OL ) |
24 |
|
simp31l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> P e. A ) |
25 |
1 5
|
atbase |
|- ( P e. A -> P e. B ) |
26 |
24 25
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> P e. B ) |
27 |
1 3 17
|
olj01 |
|- ( ( K e. OL /\ P e. B ) -> ( P .\/ ( 0. ` K ) ) = P ) |
28 |
23 26 27
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( P .\/ ( 0. ` K ) ) = P ) |
29 |
20 28
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( P .\/ ( R ` ( _I |` B ) ) ) = P ) |
30 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
31 |
|
simp33l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> b e. T ) |
32 |
6 7
|
ltrncnv |
|- ( ( ( K e. HL /\ W e. H ) /\ b e. T ) -> `' b e. T ) |
33 |
30 31 32
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> `' b e. T ) |
34 |
1 6 7
|
ltrn1o |
|- ( ( ( K e. HL /\ W e. H ) /\ `' b e. T ) -> `' b : B -1-1-onto-> B ) |
35 |
30 33 34
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> `' b : B -1-1-onto-> B ) |
36 |
|
f1of |
|- ( `' b : B -1-1-onto-> B -> `' b : B --> B ) |
37 |
|
fcoi2 |
|- ( `' b : B --> B -> ( ( _I |` B ) o. `' b ) = `' b ) |
38 |
35 36 37
|
3syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( _I |` B ) o. `' b ) = `' b ) |
39 |
38
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( R ` ( ( _I |` B ) o. `' b ) ) = ( R ` `' b ) ) |
40 |
6 7 8
|
trlcnv |
|- ( ( ( K e. HL /\ W e. H ) /\ b e. T ) -> ( R ` `' b ) = ( R ` b ) ) |
41 |
30 31 40
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( R ` `' b ) = ( R ` b ) ) |
42 |
39 41
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( R ` ( ( _I |` B ) o. `' b ) ) = ( R ` b ) ) |
43 |
42
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( Z .\/ ( R ` ( ( _I |` B ) o. `' b ) ) ) = ( Z .\/ ( R ` b ) ) ) |
44 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
45 |
|
simp33 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( b e. T /\ b =/= ( _I |` B ) ) ) |
46 |
44 45
|
jca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) |
47 |
1 2 3 4 5 6 7 8 9
|
cdlemkid1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( Z .\/ ( R ` b ) ) = ( P .\/ ( R ` b ) ) ) |
48 |
46 47
|
syld3an3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( Z .\/ ( R ` b ) ) = ( P .\/ ( R ` b ) ) ) |
49 |
43 48
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( Z .\/ ( R ` ( ( _I |` B ) o. `' b ) ) ) = ( P .\/ ( R ` b ) ) ) |
50 |
29 49
|
oveq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( P .\/ ( R ` ( _I |` B ) ) ) ./\ ( Z .\/ ( R ` ( ( _I |` B ) o. `' b ) ) ) ) = ( P ./\ ( P .\/ ( R ` b ) ) ) ) |
51 |
21
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> K e. Lat ) |
52 |
1 6 7 8
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ b e. T ) -> ( R ` b ) e. B ) |
53 |
30 31 52
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( R ` b ) e. B ) |
54 |
1 3 4
|
latabs2 |
|- ( ( K e. Lat /\ P e. B /\ ( R ` b ) e. B ) -> ( P ./\ ( P .\/ ( R ` b ) ) ) = P ) |
55 |
51 26 53 54
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( P ./\ ( P .\/ ( R ` b ) ) ) = P ) |
56 |
50 55
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( P .\/ ( R ` ( _I |` B ) ) ) ./\ ( Z .\/ ( R ` ( ( _I |` B ) o. `' b ) ) ) ) = P ) |
57 |
16 56
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> [_ ( _I |` B ) / g ]_ Y = P ) |
58 |
12 57
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> [_ G / g ]_ Y = P ) |