| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk5.b |
|- B = ( Base ` K ) |
| 2 |
|
cdlemk5.l |
|- .<_ = ( le ` K ) |
| 3 |
|
cdlemk5.j |
|- .\/ = ( join ` K ) |
| 4 |
|
cdlemk5.m |
|- ./\ = ( meet ` K ) |
| 5 |
|
cdlemk5.a |
|- A = ( Atoms ` K ) |
| 6 |
|
cdlemk5.h |
|- H = ( LHyp ` K ) |
| 7 |
|
cdlemk5.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 8 |
|
cdlemk5.r |
|- R = ( ( trL ` K ) ` W ) |
| 9 |
|
cdlemk5.z |
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) |
| 10 |
9
|
oveq1i |
|- ( Z .\/ ( R ` b ) ) = ( ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) .\/ ( R ` b ) ) |
| 11 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> K e. HL ) |
| 12 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 13 |
|
simp3rl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> b e. T ) |
| 14 |
|
simp3rr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> b =/= ( _I |` B ) ) |
| 15 |
1 5 6 7 8
|
trlnidat |
|- ( ( ( K e. HL /\ W e. H ) /\ b e. T /\ b =/= ( _I |` B ) ) -> ( R ` b ) e. A ) |
| 16 |
12 13 14 15
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( R ` b ) e. A ) |
| 17 |
|
simp3ll |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> P e. A ) |
| 18 |
1 3 5
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ ( R ` b ) e. A ) -> ( P .\/ ( R ` b ) ) e. B ) |
| 19 |
11 17 16 18
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( P .\/ ( R ` b ) ) e. B ) |
| 20 |
11
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> K e. Lat ) |
| 21 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> N e. T ) |
| 22 |
1 5
|
atbase |
|- ( P e. A -> P e. B ) |
| 23 |
17 22
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> P e. B ) |
| 24 |
1 6 7
|
ltrncl |
|- ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ P e. B ) -> ( N ` P ) e. B ) |
| 25 |
12 21 23 24
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( N ` P ) e. B ) |
| 26 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> F e. T ) |
| 27 |
6 7
|
ltrncnv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> `' F e. T ) |
| 28 |
12 26 27
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> `' F e. T ) |
| 29 |
6 7
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ b e. T /\ `' F e. T ) -> ( b o. `' F ) e. T ) |
| 30 |
12 13 28 29
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( b o. `' F ) e. T ) |
| 31 |
1 6 7 8
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( b o. `' F ) e. T ) -> ( R ` ( b o. `' F ) ) e. B ) |
| 32 |
12 30 31
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( R ` ( b o. `' F ) ) e. B ) |
| 33 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ ( N ` P ) e. B /\ ( R ` ( b o. `' F ) ) e. B ) -> ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) e. B ) |
| 34 |
20 25 32 33
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) e. B ) |
| 35 |
2 3 5
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ ( R ` b ) e. A ) -> ( R ` b ) .<_ ( P .\/ ( R ` b ) ) ) |
| 36 |
11 17 16 35
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( R ` b ) .<_ ( P .\/ ( R ` b ) ) ) |
| 37 |
1 2 3 4 5
|
atmod2i1 |
|- ( ( K e. HL /\ ( ( R ` b ) e. A /\ ( P .\/ ( R ` b ) ) e. B /\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) e. B ) /\ ( R ` b ) .<_ ( P .\/ ( R ` b ) ) ) -> ( ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) .\/ ( R ` b ) ) = ( ( P .\/ ( R ` b ) ) ./\ ( ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) .\/ ( R ` b ) ) ) ) |
| 38 |
11 16 19 34 36 37
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) .\/ ( R ` b ) ) = ( ( P .\/ ( R ` b ) ) ./\ ( ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) .\/ ( R ` b ) ) ) ) |
| 39 |
1 5
|
atbase |
|- ( ( R ` b ) e. A -> ( R ` b ) e. B ) |
| 40 |
16 39
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( R ` b ) e. B ) |
| 41 |
1 6 7 8
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ N e. T ) -> ( R ` N ) e. B ) |
| 42 |
12 21 41
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( R ` N ) e. B ) |
| 43 |
1 3
|
latj32 |
|- ( ( K e. Lat /\ ( P e. B /\ ( R ` b ) e. B /\ ( R ` N ) e. B ) ) -> ( ( P .\/ ( R ` b ) ) .\/ ( R ` N ) ) = ( ( P .\/ ( R ` N ) ) .\/ ( R ` b ) ) ) |
| 44 |
20 23 40 42 43
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( P .\/ ( R ` b ) ) .\/ ( R ` N ) ) = ( ( P .\/ ( R ` N ) ) .\/ ( R ` b ) ) ) |
| 45 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 46 |
2 3 5 6 7 8
|
trljat3 |
|- ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` N ) ) = ( ( N ` P ) .\/ ( R ` N ) ) ) |
| 47 |
12 21 45 46
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( P .\/ ( R ` N ) ) = ( ( N ` P ) .\/ ( R ` N ) ) ) |
| 48 |
47
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( P .\/ ( R ` N ) ) .\/ ( R ` b ) ) = ( ( ( N ` P ) .\/ ( R ` N ) ) .\/ ( R ` b ) ) ) |
| 49 |
1 3
|
latjass |
|- ( ( K e. Lat /\ ( ( N ` P ) e. B /\ ( R ` N ) e. B /\ ( R ` b ) e. B ) ) -> ( ( ( N ` P ) .\/ ( R ` N ) ) .\/ ( R ` b ) ) = ( ( N ` P ) .\/ ( ( R ` N ) .\/ ( R ` b ) ) ) ) |
| 50 |
20 25 42 40 49
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( ( N ` P ) .\/ ( R ` N ) ) .\/ ( R ` b ) ) = ( ( N ` P ) .\/ ( ( R ` N ) .\/ ( R ` b ) ) ) ) |
| 51 |
44 48 50
|
3eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( P .\/ ( R ` b ) ) .\/ ( R ` N ) ) = ( ( N ` P ) .\/ ( ( R ` N ) .\/ ( R ` b ) ) ) ) |
| 52 |
1 3
|
latjass |
|- ( ( K e. Lat /\ ( ( N ` P ) e. B /\ ( R ` ( b o. `' F ) ) e. B /\ ( R ` b ) e. B ) ) -> ( ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) .\/ ( R ` b ) ) = ( ( N ` P ) .\/ ( ( R ` ( b o. `' F ) ) .\/ ( R ` b ) ) ) ) |
| 53 |
20 25 32 40 52
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) .\/ ( R ` b ) ) = ( ( N ` P ) .\/ ( ( R ` ( b o. `' F ) ) .\/ ( R ` b ) ) ) ) |
| 54 |
1 3
|
latjcom |
|- ( ( K e. Lat /\ ( R ` N ) e. B /\ ( R ` b ) e. B ) -> ( ( R ` N ) .\/ ( R ` b ) ) = ( ( R ` b ) .\/ ( R ` N ) ) ) |
| 55 |
20 42 40 54
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( R ` N ) .\/ ( R ` b ) ) = ( ( R ` b ) .\/ ( R ` N ) ) ) |
| 56 |
6 7 8
|
trlcnv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` `' F ) = ( R ` F ) ) |
| 57 |
12 26 56
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( R ` `' F ) = ( R ` F ) ) |
| 58 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( R ` F ) = ( R ` N ) ) |
| 59 |
57 58
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( R ` `' F ) = ( R ` N ) ) |
| 60 |
59
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( R ` b ) .\/ ( R ` `' F ) ) = ( ( R ` b ) .\/ ( R ` N ) ) ) |
| 61 |
55 60
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( R ` N ) .\/ ( R ` b ) ) = ( ( R ` b ) .\/ ( R ` `' F ) ) ) |
| 62 |
3 6 7 8
|
trljco |
|- ( ( ( K e. HL /\ W e. H ) /\ b e. T /\ `' F e. T ) -> ( ( R ` b ) .\/ ( R ` ( b o. `' F ) ) ) = ( ( R ` b ) .\/ ( R ` `' F ) ) ) |
| 63 |
12 13 28 62
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( R ` b ) .\/ ( R ` ( b o. `' F ) ) ) = ( ( R ` b ) .\/ ( R ` `' F ) ) ) |
| 64 |
1 3
|
latjcom |
|- ( ( K e. Lat /\ ( R ` b ) e. B /\ ( R ` ( b o. `' F ) ) e. B ) -> ( ( R ` b ) .\/ ( R ` ( b o. `' F ) ) ) = ( ( R ` ( b o. `' F ) ) .\/ ( R ` b ) ) ) |
| 65 |
20 40 32 64
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( R ` b ) .\/ ( R ` ( b o. `' F ) ) ) = ( ( R ` ( b o. `' F ) ) .\/ ( R ` b ) ) ) |
| 66 |
61 63 65
|
3eqtr2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( R ` N ) .\/ ( R ` b ) ) = ( ( R ` ( b o. `' F ) ) .\/ ( R ` b ) ) ) |
| 67 |
66
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( N ` P ) .\/ ( ( R ` N ) .\/ ( R ` b ) ) ) = ( ( N ` P ) .\/ ( ( R ` ( b o. `' F ) ) .\/ ( R ` b ) ) ) ) |
| 68 |
53 67
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) .\/ ( R ` b ) ) = ( ( N ` P ) .\/ ( ( R ` N ) .\/ ( R ` b ) ) ) ) |
| 69 |
51 68
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( P .\/ ( R ` b ) ) .\/ ( R ` N ) ) = ( ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) .\/ ( R ` b ) ) ) |
| 70 |
69
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( P .\/ ( R ` b ) ) ./\ ( ( P .\/ ( R ` b ) ) .\/ ( R ` N ) ) ) = ( ( P .\/ ( R ` b ) ) ./\ ( ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) .\/ ( R ` b ) ) ) ) |
| 71 |
1 3 4
|
latabs2 |
|- ( ( K e. Lat /\ ( P .\/ ( R ` b ) ) e. B /\ ( R ` N ) e. B ) -> ( ( P .\/ ( R ` b ) ) ./\ ( ( P .\/ ( R ` b ) ) .\/ ( R ` N ) ) ) = ( P .\/ ( R ` b ) ) ) |
| 72 |
20 19 42 71
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( P .\/ ( R ` b ) ) ./\ ( ( P .\/ ( R ` b ) ) .\/ ( R ` N ) ) ) = ( P .\/ ( R ` b ) ) ) |
| 73 |
38 70 72
|
3eqtr2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) .\/ ( R ` b ) ) = ( P .\/ ( R ` b ) ) ) |
| 74 |
10 73
|
eqtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> ( Z .\/ ( R ` b ) ) = ( P .\/ ( R ` b ) ) ) |