Metamath Proof Explorer


Theorem cdlemkfid2N

Description: Lemma for cdlemkfid3N . (Contributed by NM, 29-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk5.b
|- B = ( Base ` K )
cdlemk5.l
|- .<_ = ( le ` K )
cdlemk5.j
|- .\/ = ( join ` K )
cdlemk5.m
|- ./\ = ( meet ` K )
cdlemk5.a
|- A = ( Atoms ` K )
cdlemk5.h
|- H = ( LHyp ` K )
cdlemk5.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk5.r
|- R = ( ( trL ` K ) ` W )
cdlemk5.z
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) )
Assertion cdlemkfid2N
|- ( ( ( ( K e. HL /\ W e. H ) /\ F = N ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ b e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> Z = ( b ` P ) )

Proof

Step Hyp Ref Expression
1 cdlemk5.b
 |-  B = ( Base ` K )
2 cdlemk5.l
 |-  .<_ = ( le ` K )
3 cdlemk5.j
 |-  .\/ = ( join ` K )
4 cdlemk5.m
 |-  ./\ = ( meet ` K )
5 cdlemk5.a
 |-  A = ( Atoms ` K )
6 cdlemk5.h
 |-  H = ( LHyp ` K )
7 cdlemk5.t
 |-  T = ( ( LTrn ` K ) ` W )
8 cdlemk5.r
 |-  R = ( ( trL ` K ) ` W )
9 cdlemk5.z
 |-  Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) )
10 simp1r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F = N ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ b e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> F = N )
11 10 fveq1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F = N ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ b e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( F ` P ) = ( N ` P ) )
12 11 oveq1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F = N ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ b e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( F ` P ) .\/ ( R ` ( b o. `' F ) ) ) = ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) )
13 12 oveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F = N ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ b e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( P .\/ ( R ` b ) ) ./\ ( ( F ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) )
14 1 2 3 4 5 6 7 8 cdlemkfid1N
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ b e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( P .\/ ( R ` b ) ) ./\ ( ( F ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) = ( b ` P ) )
15 14 3adant1r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F = N ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ b e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( P .\/ ( R ` b ) ) ./\ ( ( F ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) = ( b ` P ) )
16 13 15 eqtr3d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F = N ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ b e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) = ( b ` P ) )
17 9 16 syl5eq
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F = N ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ b e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> Z = ( b ` P ) )