Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemk5.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemk5.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemk5.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemk5.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemk5.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemk5.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemk5.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemk5.z |
⊢ 𝑍 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑏 ) ) ∧ ( ( 𝑁 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑏 ∘ ◡ 𝐹 ) ) ) ) |
10 |
|
simp1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑏 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐹 = 𝑁 ) |
11 |
10
|
fveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑏 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝐹 ‘ 𝑃 ) = ( 𝑁 ‘ 𝑃 ) ) |
12 |
11
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑏 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑏 ∘ ◡ 𝐹 ) ) ) = ( ( 𝑁 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑏 ∘ ◡ 𝐹 ) ) ) ) |
13 |
12
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑏 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑏 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑏 ∘ ◡ 𝐹 ) ) ) ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑏 ) ) ∧ ( ( 𝑁 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑏 ∘ ◡ 𝐹 ) ) ) ) ) |
14 |
1 2 3 4 5 6 7 8
|
cdlemkfid1N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑏 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑏 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑏 ∘ ◡ 𝐹 ) ) ) ) = ( 𝑏 ‘ 𝑃 ) ) |
15 |
14
|
3adant1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑏 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑏 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑏 ∘ ◡ 𝐹 ) ) ) ) = ( 𝑏 ‘ 𝑃 ) ) |
16 |
13 15
|
eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑏 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑏 ) ) ∧ ( ( 𝑁 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑏 ∘ ◡ 𝐹 ) ) ) ) = ( 𝑏 ‘ 𝑃 ) ) |
17 |
9 16
|
syl5eq |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑏 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝑍 = ( 𝑏 ‘ 𝑃 ) ) |